Scattering of solitons by dislocations in the modified Korteweg de Vries–sine-Gordon equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2055-2066 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multisoliton solutions of the modified Korteweg de Vries–sine-Gordon equation involving coefficients with local perturbations in the coordinate are considered. Cases describing the bifurcation regimes of reflection and capture of solitons (kinks and breathers) in their interaction with dislocations of various Gaussian forms are numerically studied.
@article{ZVMMF_2015_55_12_a8,
     author = {S. P. Popov},
     title = {Scattering of solitons by dislocations in the modified {Korteweg} de {Vries{\textendash}sine-Gordon} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2055--2066},
     year = {2015},
     volume = {55},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a8/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - Scattering of solitons by dislocations in the modified Korteweg de Vries–sine-Gordon equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 2055
EP  - 2066
VL  - 55
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a8/
LA  - ru
ID  - ZVMMF_2015_55_12_a8
ER  - 
%0 Journal Article
%A S. P. Popov
%T Scattering of solitons by dislocations in the modified Korteweg de Vries–sine-Gordon equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 2055-2066
%V 55
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a8/
%G ru
%F ZVMMF_2015_55_12_a8
S. P. Popov. Scattering of solitons by dislocations in the modified Korteweg de Vries–sine-Gordon equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2055-2066. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a8/

[1] Konno K., Kameyama W., Sanuki H., “Effect of weak dislocation potential on nonlinear wave propagation in anharmonic cristal”, J. Phys. Soc. Japan, 37 (1974), 171–176 | DOI

[2] Hirota R., “Exect solution of the Sine-Gordon equation for multiple collisions of solitons”, J. Phys. Soc. Japan, 33 (1972), 1459–1463 | DOI

[3] Sayed S. M., “The Backlund transformation, exact solutions, and conservation laws for the compound Modified Korteveg-de Vries-Sine-Gordon equations which describe pseudospherical surfaces”, J. Appl. Maths., 2013 (2013), 613065 | MR | Zbl

[4] Khater A. H., Callebaut D. K., Sayed S. M., “Conservation laws for some nonlinear evolution equation which describe pseudo-spherical surfaces”, J. Geometry and Phys., 51:2. P. 332–352 (2004) | MR | Zbl

[5] Chen D., Zhang D., Deng S., “The novel multi-soliton solutions of the MKdV-sine Gordon equations”, J. of the Physical Society of Japan, 71:2 (2002), 658–659 | DOI | MR | Zbl

[6] Alejo M. A., Munos C., “On the nonlinear stability of mKdV breathers”, J. Phys. A.: Math. Theor., 45:43 (2012), 432001–43008 | DOI | MR

[7] Leblond H., Mihalache D., “Few-optical-cycle solitons: Modified Korteveg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models”, Phys. Rev. A, 79 (2009), 063835 | DOI

[8] Leblond H., Mihalache D., “Optical solitons in the few-cycle regime: recent theoretical results”, Romanian Reports in Physics, 63 (2011), 1254–1266

[9] Leblond H., Mihalache D., “Few-optical-cycle dissipative solitons”, J. Phys. A.: Math. Theor., 43:37 (2010), 375205–375222 | DOI | MR

[10] Shamsutdinov M. A., Shamsutdinov D. M., Ekomasov E. G., “Dinamika domennykh stenok v ortorombicheskikh antiferromagnetikakh vblizi predelnoi skorosti”, Fizika metallov i metallovedenie, 96:4 (2003), 16–22

[11] Shamsutdinov M. A., Nazarov V. N., Lomakina I. Yu. i dr., Ferro- i antiferromagnitodinamika. Nelineinye kolebaniya, volny i solitony, Nauka, M., 2009

[12] Gomes J. F., de Melo G. R., Ymai L. H., Zimerman A. H., “Nonautonomus mixed mKdV-sinh-Gordon hierarchy”, J. Phys. A.: Math. Theor., 43:39 (2010), 395203–395212 | DOI | MR

[13] Goatham S. W., Mannering L. E., Hann R., Krusch S., “Dynamics of multi-kinks in the presence of wells and barriers”, Acta Physica Polonica B, 42:10 (2011), 2087–2106 | DOI

[14] Gumerov A. M., Ekomasov E. G., Zakiryanov F. K., Kudryavtsev R. V., “Struktura i svoistva chetyrekhkinkovykh multisolitonov uravneniya sinus-Gordona”, Zh. vychisl. matem. i matem. fiz., 54:3 (2014), 481–495 | DOI | Zbl

[15] Popov S. P., “Vliyanie dislokatsii na kinkovye resheniya dvoinogo sinus-Gordona uravneniya”, Zh. vychisl. matem. i matem. fiz., 53:12 (2013), 2072–2081 | DOI | Zbl

[16] Ekomasov E. G., Murtazin R. R., Bogomazova O. B., Gumerov A. M., “One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange”, J. Magn. Magn. Mater., 339 (2013), 133–137 | DOI

[17] Popov S. P., “O primenenii kvazispektralnogo metoda Fure k solitonosoderzhaschim uravneniyam”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2176–2183 | MR | Zbl

[18] Popov S. P., “Vozmuschennye solitonnye resheniya uravneniya sin-Gordona”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2182–2188 | MR