@article{ZVMMF_2015_55_12_a7,
author = {M. G. Makhmudova and A. Kh. Khanmamedov},
title = {Asymptotic periodic solution of the {Cauchy} problem for the {Langmuir} lattice},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2049--2054},
year = {2015},
volume = {55},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a7/}
}
TY - JOUR AU - M. G. Makhmudova AU - A. Kh. Khanmamedov TI - Asymptotic periodic solution of the Cauchy problem for the Langmuir lattice JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 2049 EP - 2054 VL - 55 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a7/ LA - ru ID - ZVMMF_2015_55_12_a7 ER -
%0 Journal Article %A M. G. Makhmudova %A A. Kh. Khanmamedov %T Asymptotic periodic solution of the Cauchy problem for the Langmuir lattice %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 2049-2054 %V 55 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a7/ %G ru %F ZVMMF_2015_55_12_a7
M. G. Makhmudova; A. Kh. Khanmamedov. Asymptotic periodic solution of the Cauchy problem for the Langmuir lattice. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2049-2054. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a7/
[1] Manakov S. V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, Zh. eksperim. i teor. fiz., 67:2 (1974), 543–555
[2] Kac M., van Moerbeke P., “On the explicitly soluble system of nonlinear differential equations related to certain Toda lattices”, Adv. Math., 16:2 (1975), 160–169 | DOI | MR | Zbl
[3] Berezanskii Yu. M., “Integrirovanie nelineinykh raznostnykh uravnenii metodom obratnoi spektralnoi zadachi”, Dokl. AN SSSR, 281:1 (1985), 16–19 | MR | Zbl
[4] Veselov A. P., “Integrirovanie statsionarnoi zadachi dlya klassicheskoi spinovoi tsepochki”, Teor. i matem. fiz., 71:1 (1987), 154–159 | MR
[5] Vereschagin V. L., “Asimptoticheskoe razlozhenie resheniya zadachi Koshi dlya tsepochki Volterra so stupeneobraznym nachalnym usloviem”, Teor. i matem. fiz., 3:3 (1997), 335–344 | DOI | MR
[6] Bulla W., Gesztesy F., Holden H., Teschl G., “Algebra-geometric quasi-periodic finite-gap solutions of the Toda and Kac van Moerbeke hierarchies”, MEMO/135/641, Memoirs of the Amer. Math. Soc., 135, 1998 | DOI | MR
[7] Teschl G., Jacobi operators and completely integrable nonlinear lattices, Math. surv. and monographs, 72, AMS, Providence, 2000 | MR
[8] Khanmamedov Ag. Kh., “Metod integrirovaniya zadachi Koshi dlya lengmyurovskoi tsepochki s raskhodyaschimsya nachalnym usloviem”, Zh. vychisl. matem. i matem. fiz., 45:9 (2005), 1639–1650 | MR | Zbl
[9] Guseinov I. M., Khanmamedov Ag. Kh., “Ob odnom algoritme resheniya zadachi Koshi dlya konechnoi lengmyurovskoi tsepochki”, Zh. vychisl. matem. i matem. fiz., 49:9 (2009), 1589–1593 | MR | Zbl
[10] Egorova I., Michor J., Teschl G., “Inverse scattering transform for the Toda hierarchy with quasi-periodic background”, Proc. of the Amer. Math. Soc., 135:6 (2007), 1817–1827 | DOI | MR | Zbl
[11] Khanmamedov Ag. Kh., “Reshenie zadachi Koshi dlya tsepochki Tody s predelno periodicheskimi nachalnymi dannymi”, Matem. sb., 199:3 (2008), 133–143 | DOI
[12] Firsova N. E., “O reshenii zadachi Koshi dlya uravneniya Kortevega-de Vriza s nachalnymi dannymi, yavlyayuschimisya summoi periodicheskoi i bystroubyvayuschei funktsii”, Matem. sb., 135:2 (1988), 261–268 | Zbl
[13] Khanmamedov Ag. Kh., “Zadacha rasseyaniya dlya vozmuschennogo raznostnogo uravneniya Khilla”, Vestnik Bakinskogo Un-ta. Ser. fiz.-mat. nauk, 2003, no. 4, 51–57 | MR
[14] Khanmamedov Ag. Kh., “Pryamaya i obratnaya zadachi rasseyaniya dlya vozmuschennogo raznostnogo uravneniya Khilla”, Matem. sb., 196:10 (2005), 137–160 | DOI | MR | Zbl
[15] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR