@article{ZVMMF_2015_55_12_a6,
author = {N. N. Nefedov and Minkang Ni},
title = {Internal layers in the one-dimensional reaction{\textendash}diffusion equation with a discontinuous reactive term},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2042--2048},
year = {2015},
volume = {55},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a6/}
}
TY - JOUR AU - N. N. Nefedov AU - Minkang Ni TI - Internal layers in the one-dimensional reaction–diffusion equation with a discontinuous reactive term JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 2042 EP - 2048 VL - 55 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a6/ LA - ru ID - ZVMMF_2015_55_12_a6 ER -
%0 Journal Article %A N. N. Nefedov %A Minkang Ni %T Internal layers in the one-dimensional reaction–diffusion equation with a discontinuous reactive term %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 2042-2048 %V 55 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a6/ %G ru %F ZVMMF_2015_55_12_a6
N. N. Nefedov; Minkang Ni. Internal layers in the one-dimensional reaction–diffusion equation with a discontinuous reactive term. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2042-2048. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a6/
[1] Butuzov V. F., Vasileva A. B., Nefedov N. N., “Asimptoticheskaya teoriya kontrastnykh struktur”, Avtomatika i telemekhan., 1997, no. 7, 4–32 | MR
[2] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundamentalnaya i prikladnaya matem., 4:3 (1998), 799–851 | MR | Zbl
[3] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Singulyarno vozmuschennye zadachi s pogranichnymi i vnutrennimi sloyami”, Tr. MIAN, 268, 2010, 268–283
[4] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR
[5] Nefedov N., “Comparison principle for reaction-diffusion-advection problems with boundary and internal layers”, Lect. Notes in Comput. Sci., 823, 2013, 62–72 | DOI | MR
[6] Butuzov V. F., Levashova N. T., Melnikova A. A., “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme uravnenii s razlichnymi stepenyami malogo parametra”, Zh. vychisl. matem. i matem. fiz., 52:11 (2012), 1983–2003 | MR | Zbl
[7] Nefedov N. N., Recke L., Schnieder K. R., “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, J. Math. Analys. Applicat., 405 (2013), 90–103 | DOI | MR | Zbl
[8] Volkov V., Nefedov N., “Asymptotic-numerical investigation of generation and motion of fronts in phase transition models”, Lect. Notes in Comput. Sci., 8236, 2013, 524–531 | DOI | MR | Zbl
[9] Franz S., Roos H.-G., “The capriciousness of numerical methods for singular perturbations”, SIAM Review, 53 (2011), 157–173 | DOI | MR | Zbl
[10] Franz S., Kopteva N., “Green's function estimates for a singularly perturbed convection-diffusion problem”, J. Different. Equations, 252 (2012), 1521–1545 | DOI | MR | Zbl
[11] Kopteva N., “Numerical analysis of a 2d singularly perturbed semilinear reaction-diffusion problem”, Lect. Notes in Comput. Sci., 5434, 2009, 80–91 | DOI | Zbl
[12] Butuzov V. F., Nefedov N. N., “Singularly perturbed boundary value problems in case of exchange of stabilities”, J. Math. Analys. Applicat., 229 (1999), 543–562 | DOI | MR | Zbl