Necessary and sufficient conditions for the polynomial convergence of the quasi-reversibility and finite-difference methods for an ill-posed Cauchy problem with exact data
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2027-2041 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence of the quasi-reversibility method and two classes of finite-difference methods for solving the ill-posed Cauchy problem for the first-order equation with a sectorial operator in a Banach space is analyzed. The necessary and sufficient conditions — close to one another — for the convergence of these methods with a rate polynomial with respect to the regularization parameter or discretization step are obtained in terms of the exponent in the source representability of the solution.
@article{ZVMMF_2015_55_12_a5,
     author = {M. M. Kokurin},
     title = {Necessary and sufficient conditions for the polynomial convergence of the quasi-reversibility and finite-difference methods for an ill-posed {Cauchy} problem with exact data},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2027--2041},
     year = {2015},
     volume = {55},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a5/}
}
TY  - JOUR
AU  - M. M. Kokurin
TI  - Necessary and sufficient conditions for the polynomial convergence of the quasi-reversibility and finite-difference methods for an ill-posed Cauchy problem with exact data
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 2027
EP  - 2041
VL  - 55
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a5/
LA  - ru
ID  - ZVMMF_2015_55_12_a5
ER  - 
%0 Journal Article
%A M. M. Kokurin
%T Necessary and sufficient conditions for the polynomial convergence of the quasi-reversibility and finite-difference methods for an ill-posed Cauchy problem with exact data
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 2027-2041
%V 55
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a5/
%G ru
%F ZVMMF_2015_55_12_a5
M. M. Kokurin. Necessary and sufficient conditions for the polynomial convergence of the quasi-reversibility and finite-difference methods for an ill-posed Cauchy problem with exact data. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2027-2041. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a5/

[1] Bakushinskii A. B., Kokurin M. M., Kokurin M. Yu., “Ob odnom klasse raznostnykh skhem resheniya nekorrektnoi zadachi Koshi v banakhovom prostranstve”, Zh. vychisl. matem. i matem. fiziki, 52:3 (2012), 483–498 | MR | Zbl

[2] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[3] Agmon S., “On the eigenfunctions and the eigenvalues of general elliptic boundary value problems”, Comm. Pure Appl. Math., 15 (1962), 119–147 | DOI | MR | Zbl

[4] Stewart H. B., “Generation of analytic semigroups by strongly elliptic operators under general boundary conditions”, Trans. Amer. Math. Soc., 259 (1980), 299–310 | DOI | MR | Zbl

[5] Ivanov V. K., Melnikova I. V., Filinkov A. I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Nauka, M., 1995 | MR

[6] Bakushinskii A. B., Kokurin M. Yu., Klyuchev V. V., “Ob otsenke skorosti skhodimosti i pogreshnosti raznostnykh metodov approksimatsii resheniya nekorrektnoi zadachi Koshi v banakhovom prostranstve”, Vychisl. metody i programmirovanie, 7 (2006), 163–171 | MR

[7] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002

[8] Bakushinskii A. B., “Raznostnye metody resheniya nekorrektnykh zadach Koshi dlya evolyutsionnykh uravnenii v kompleksnom V-prostranstve”, Differents. ur-niya, 8:9 (1972), 1661–1668 | MR | Zbl

[9] Kokurin M. M., “Ob optimizatsii otsenok skorosti skhodimosti nekotorykh klassov raznostnykh skhem resheniya nekorrektnoi zadachi Koshi”, Vychisl. metody i programmirovanie, 14 (2013), 58–76

[10] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970 | MR

[11] Haase M., The functional calculus for sectorial operators, Birkhauser, Basel, 2006 | MR | Zbl

[12] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[13] Bakushinsky A. B., Kokurin M. Yu., Paymerov S. K., “On error estimates of difference solution methods for ill-posed Cauchy problems in a Hilbert space”, J. Inverse and Ill-Posed Problems, 16:6 (2008), 553–565 | DOI | MR | Zbl

[14] Bakushinsky A. V., Kokurin M. Yu., Kokurin M. M., “On a class of finite difference methods for ill-posed Cauchy problems with noisy data”, J. Inverse and Ill-Posed Problems, 18:9 (2011), 959–977 | DOI | MR

[15] Bakushinskii A. B., Kokurin M. M., Kokurin M. Yu., “O skheme polnoi diskretizatsii nekorrektnoi zadachi Koshi v banakhovom prostranstve”, Tr. In-ta matem. i mekhan. UrO RAN, 18, no. 1, 2012, 96–108

[16] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, M., 2004

[17] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[18] Engel K.-J., Nagel R., One-parameter semigroups for linear evolution equations, Springer, New York, 2000 | MR | Zbl