Generalized Edgeworth–Pareto principle
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2015-2021 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The general multicriteria choice problem with m individual preference relations and an asymmetric collective preference relation is considered. The concept of a $k$-effective alternative is introduced, which coincides with an effective alternative for $k=1$ and represents a weakly effective alternative for $k=m$. For the other integer values of $k$, it lies somewhere in between. In terms of the general multicriteria choice problem, the Pareto axiom and the exclusion axiom for dominated alternatives are stated. Assuming that these axioms hold, a generalized Edgeworth–Pareto principle is established, which was earlier introduced by the author in the special case $k=1$. The results are extended to a fuzzy collective preference relation and to a fuzzy set of initial alternatives.
@article{ZVMMF_2015_55_12_a3,
     author = {V. D. Nogin},
     title = {Generalized {Edgeworth{\textendash}Pareto} principle},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2015--2021},
     year = {2015},
     volume = {55},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a3/}
}
TY  - JOUR
AU  - V. D. Nogin
TI  - Generalized Edgeworth–Pareto principle
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 2015
EP  - 2021
VL  - 55
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a3/
LA  - ru
ID  - ZVMMF_2015_55_12_a3
ER  - 
%0 Journal Article
%A V. D. Nogin
%T Generalized Edgeworth–Pareto principle
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 2015-2021
%V 55
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a3/
%G ru
%F ZVMMF_2015_55_12_a3
V. D. Nogin. Generalized Edgeworth–Pareto principle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2015-2021. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a3/

[1] Nogin V. D., “Logicheskoe obosnovanie printsipa Edzhvorta–Pareto”, Zh. vychisl. matem. i matem. fiz., 42:7 (2002), 950–956

[2] Nogin V. D., Prinyatie reshenii v mnogokriterialnoi srede: kolichestvennyi podkhod, Fizmatlit, M., 2002

[3] Nogin V. D., “Printsip Edzhvorta–Pareto i otnositelnaya vazhnost kriteriev v sluchae nechetkogo otnosheniya predpochteniya”, Zh. vychisl. matem. i matem. fiz., 43:11 (2003), 1676–1686 | MR

[4] Nogin V. D., “Obobschennyi printsip Edzhvorta–Pareto i granitsy ego primenimosti”, Ekonomika i matem. metody, 41:3 (2005), 128–134 | Zbl

[5] Nogin V. D., “Obobschennyi printsip Edzhvorta–Pareto v terminakh funktsii vybora”, Metody podderzhki prinyatiya reshenii, Sb. tr. ISA RAN, eds. S. V. Emelyanov, A. B. Petrovskii, Editorial URSS, M., 2005, 43–53

[6] Nogin V. D., “Printsip Edzhvorta–Pareto v terminakh nechetkoi funktsii vybora”, Zh. vychisl. matem. i matem. fiz., 46:4 (2006), 582–591 | MR

[7] Noghin V. D., “An Axiomatization of the generalized Edgeworth–Pareto principle in terms of choice functions”, Math. Social Sciences, 52:2 (2006), 210–216 | DOI | MR | Zbl

[8] Nogin V. D., Volkova N. A., “Evolyutsiya printsipa Edzhvorta–Pareto”, Tavricheskii vestn. informatiki i matem., 2006, no. 1, 23–33 | MR

[9] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007

[10] Aleskerov F. T., Khabina E. L., Shvarts D. A., Binarnye otnosheniya, grafy i kollektivnye otnosheniya, Izd. Dom GU VSh, M., 2006

[11] Orlovskii S. A., Problemy prinyatiya reshenii pri nechetkoi iskhodnoi informatsii, Nauka, M., 1981 | MR