Generalized Edgeworth–Pareto principle
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2015-2021

Voir la notice de l'article provenant de la source Math-Net.Ru

The general multicriteria choice problem with m individual preference relations and an asymmetric collective preference relation is considered. The concept of a $k$-effective alternative is introduced, which coincides with an effective alternative for $k=1$ and represents a weakly effective alternative for $k=m$. For the other integer values of $k$, it lies somewhere in between. In terms of the general multicriteria choice problem, the Pareto axiom and the exclusion axiom for dominated alternatives are stated. Assuming that these axioms hold, a generalized Edgeworth–Pareto principle is established, which was earlier introduced by the author in the special case $k=1$. The results are extended to a fuzzy collective preference relation and to a fuzzy set of initial alternatives.
@article{ZVMMF_2015_55_12_a3,
     author = {V. D. Nogin},
     title = {Generalized {Edgeworth{\textendash}Pareto} principle},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2015--2021},
     publisher = {mathdoc},
     volume = {55},
     number = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a3/}
}
TY  - JOUR
AU  - V. D. Nogin
TI  - Generalized Edgeworth–Pareto principle
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 2015
EP  - 2021
VL  - 55
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a3/
LA  - ru
ID  - ZVMMF_2015_55_12_a3
ER  - 
%0 Journal Article
%A V. D. Nogin
%T Generalized Edgeworth–Pareto principle
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 2015-2021
%V 55
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a3/
%G ru
%F ZVMMF_2015_55_12_a3
V. D. Nogin. Generalized Edgeworth–Pareto principle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2015-2021. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a3/