Construction of a correct combination of estimation algorithms adjusted using the cross validation technique
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2123-2129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A scheme for constructing a combination of estimation algorithms that is correct on a given training sample is proposed. The basic elements of the combination are algorithms obtained using the cross validation training technique.
@article{ZVMMF_2015_55_12_a13,
     author = {O. A. Ignat'ev},
     title = {Construction of a correct combination of estimation algorithms adjusted using the cross validation technique},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2123--2129},
     year = {2015},
     volume = {55},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a13/}
}
TY  - JOUR
AU  - O. A. Ignat'ev
TI  - Construction of a correct combination of estimation algorithms adjusted using the cross validation technique
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 2123
EP  - 2129
VL  - 55
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a13/
LA  - ru
ID  - ZVMMF_2015_55_12_a13
ER  - 
%0 Journal Article
%A O. A. Ignat'ev
%T Construction of a correct combination of estimation algorithms adjusted using the cross validation technique
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 2123-2129
%V 55
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a13/
%G ru
%F ZVMMF_2015_55_12_a13
O. A. Ignat'ev. Construction of a correct combination of estimation algorithms adjusted using the cross validation technique. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2123-2129. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a13/

[1] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Chast i”, Kibernetika, 1977, no. 4, 5–17

[2] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Chast ii”, Kibernetika, 1977, no. 6, 21–27 | MR

[3] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Chast iii”, Kibernetika, 1978, no. 2, 35–43

[4] Isaev I. V., Zhuravlev Yu. I., “Postroenie algoritmov raspoznavaniya, korrektnykh dlya zadannoi kontrolnoi vyborki”, Zh. vychisl. matem. i matem. fiz., 19:3 (1979), 726–738 | MR | Zbl

[5] Matrosov V. L., “O kriteriyakh polnoty modeli algoritmov vychisleniya otsenok i ee algebraicheskikh zamykanii”, Dokl. AN SSSR, 258:4 (1981), 791–796 | MR

[6] Dyakonov A. G., “Teoriya sistem ekvivalentnostei dlya opisaniya algebraicheskikh zamykanii obobschennoi modeli vychisleniya otsenok”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 388–400 | MR | Zbl

[7] Dyakonov A. G., “Teoriya sistem ekvivalentnostei dlya opisaniya algebraicheskikh zamykanii obobschennoi modeli vychisleniya otsenok”, Zh. vychisl. matem. i matem. fiz., 51:3 (2011), 529–544 | MR | Zbl

[8] Dyakonov A. G., “Issledovanie algebraicheskikh zamykanii algoritmov raspoznavaniya: operatory razmetki”, Tavricheskii vestn. informatiki i matem., 2008, no. 1, 199–203