Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2094-2108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complex mathematical model of aluminum casting and solidification in a variable electromagnetic field is constructed. The model is based on the solution of magnetohydrodynamic equations and the VOF method. Test results are presented for the model and the numerical algorithm proposed. The numerical results are compared with experimental data and computations of other authors and are found to be in good agreement. The model is used to simulate aluminum solidification under an electromagnetic field. The physical processes influencing ingot formation are analyzed.
@article{ZVMMF_2015_55_12_a11,
     author = {A. V. Minakov and M. V. Pervukhin and D. V. Platonov and M. Yu. Khatsayuk},
     title = {Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2094--2108},
     year = {2015},
     volume = {55},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a11/}
}
TY  - JOUR
AU  - A. V. Minakov
AU  - M. V. Pervukhin
AU  - D. V. Platonov
AU  - M. Yu. Khatsayuk
TI  - Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 2094
EP  - 2108
VL  - 55
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a11/
LA  - ru
ID  - ZVMMF_2015_55_12_a11
ER  - 
%0 Journal Article
%A A. V. Minakov
%A M. V. Pervukhin
%A D. V. Platonov
%A M. Yu. Khatsayuk
%T Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 2094-2108
%V 55
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a11/
%G ru
%F ZVMMF_2015_55_12_a11
A. V. Minakov; M. V. Pervukhin; D. V. Platonov; M. Yu. Khatsayuk. Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2094-2108. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a11/

[1] Getselev Z. N., Nepreryvnoe lite v elektromagnitnyi kristallizator, Metallurgiya, M., 1983

[2] Pervukhin M. V., Minakov A. V., Sergeev N. V., Khatsauk M. U., “Mathematic simulation of electromagnetic and thermal hydrodynamic processes in the “inductor–ingot” system of an electromagnetic mould”, Magnetohydrodynamics, 47:1 (2011), 79–87

[3] Minakov A. V., Khatsayuk M. Yu., Pervukhin M. V., “Chislennoe modelirovanie dinamiki svobodnoi poverkhnosti i kristallizatsii rasplava v elektromagnitnom kristallizatore”, Induktsionnyi nagrev, 2014, no. 1(27), 37–42

[4] Kirpo M., Modeling of turbulence properties and particle transport in recirculated flows, PhD Thesis, University of Latvia, 2008

[5] Pesteanu O., Baake E., “Contribution to the simulation of free surface flows in electromagnetic field”, Devices and Systems, Materials and Technologies for the Future, Proc. The 54$^\mathrm{th}$ Internat. Sci. Colloquium on Information Technology and Electrical Eng. (2009), 361–362

[6] Spitans S., Jakovics A., Baake E., Nacke B., “Numerical modelling of free surface dynamics of conductive melt in the induction crucible furnace”, Magnetohydrodynamics, 45:4 (2010), 425–436

[7] Baake E., Muhlbauer A., Jakowitsch A., Andree W., “Extension of the $k-\varepsilon$ model for the numerical simulation of the melt flow in induction crucible furnaces”, Metallurgical and materials transactions B, 26B (1995), 529–536 | DOI

[8] Hinze J. O., Turbulence, McGraw-Hill Publishing Co., New York, 1975

[9] Patankar S., Chislennye metody resheniya zadach teplomassoobmena i dinamiki zhidkosti, Atomizdat, M., 1984, 152 pp.

[10] Bystrov Yu. A., Isaev S. A., Kudryavtsev H. A., Leontev A. I., Chislennoe modelirovanie vikhrevoi intensifikatsii teploobmena v paketakh trub, Sudostroenie, SPb., 2005, 392 pp.

[11] Ferziger J. H., Peric M., Computational methods for fluid dynamics, Springer Verlag, Berlin, 2002 | MR | Zbl

[12] Menter F. R., “Two equation eddy viscosity turbulence models for engineering applications”, AIAA J., 32:8 (1994), 1598–1605 | DOI

[13] Menter F. R., “Review of the SST turbulence model experience from an industrial perspective”, Internat. J. Comput. Fluid Dynamics, 23 (2009), 20–35 | DOI

[14] Hirt C. W., “Volume of fluid (VOF). Method for the dynamics of free boundaries”, J. Comput. Phys., 39 (1981), 201–226 | DOI

[15] Minakov A. V., “Numerical algorithm for moving-boundary fluid dynamics problems and its testing”, Comput. Math. Math. Phys., 54:10 (2014), 1560–1570 | DOI | MR | Zbl

[16] Brackbill J. U., Kothe D. B., Zemach C. A., “Continuum method for modeling surface tension”, J. Comput. Phys., 100 (1992), 335–354 | DOI | MR | Zbl

[17] Gavrilov A. A., Minakov A. V., Dekterev A. A., Rudyak V. Ya., “A numerical algorithm for modeling laminar flows in an annular channel with eccentricity”, Sib. Zh. Ind. Mat., 13:4 (2010), 3–14 | Zbl

[18] Tsvetkov F. F., Grigorev B. A., Teplomassoobmen, Izd-vo MEI, M., 2005

[19] Landau L. D., Livshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982, 620 pp.

[20] Rudyak V. Ya., Minakov A. V., Gavrilov A. A., Dekterev A. A., “Application of new numerical algorithm of solving the Navier–Stokes equations for modeling the work of a viscometer of the physical pendulum type”, Thermophysics Aeromechanics, 15 (2008), 333–345 | DOI

[21] Leonard B. P., “A stable and accurate convective modeling procedure based on quadratic upstream interpolation”, Comp. Math. Appl. Mech. Engng., 19 (1979), 59–98 | DOI | Zbl

[22] Rkhi S. M., Chou U. L., “Chislennyi raschet turbulentnogo obtekaniya profilya s otryvom u zadnei kromki”, Per. s angl., Aerokosmicheskaya tekhn., 2:7 (1984), 33–43

[23] Trottenberg U., Cornelis W., Oosterlee, Anton Schüller Multigrid, Academic Press, 2001 | MR

[24] Ubbink O., Numerical prediction of two fluid systems with sharp interfaces, PhD. Thesis, Imperial College of Science, Technology and Medicine, London, England, 1997

[25] Hinatsu M., “Two-phase flows for joint research”, Proceedings of SRI-TUHH mini workshop on numerical simulation of two-phase flows, National Maritime Research Institute, 2001

[26] Neilsen K. B., Numerical prediction of green water loads on ships, PhD. Thesis, Technical university of Denmark, 2003, 172 pp.

[27] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1970, 840 pp. | MR

[28] Gau C., Viskanta R., “Melting and solidification of a pure metal from a vertical wall”, Transactions of ASME: Journal of Heat Transfer, 108 (1986), 171–174 | DOI