@article{ZVMMF_2015_55_12_a11,
author = {A. V. Minakov and M. V. Pervukhin and D. V. Platonov and M. Yu. Khatsayuk},
title = {Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2094--2108},
year = {2015},
volume = {55},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a11/}
}
TY - JOUR AU - A. V. Minakov AU - M. V. Pervukhin AU - D. V. Platonov AU - M. Yu. Khatsayuk TI - Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 2094 EP - 2108 VL - 55 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a11/ LA - ru ID - ZVMMF_2015_55_12_a11 ER -
%0 Journal Article %A A. V. Minakov %A M. V. Pervukhin %A D. V. Platonov %A M. Yu. Khatsayuk %T Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 2094-2108 %V 55 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a11/ %G ru %F ZVMMF_2015_55_12_a11
A. V. Minakov; M. V. Pervukhin; D. V. Platonov; M. Yu. Khatsayuk. Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 2094-2108. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a11/
[1] Getselev Z. N., Nepreryvnoe lite v elektromagnitnyi kristallizator, Metallurgiya, M., 1983
[2] Pervukhin M. V., Minakov A. V., Sergeev N. V., Khatsauk M. U., “Mathematic simulation of electromagnetic and thermal hydrodynamic processes in the “inductor–ingot” system of an electromagnetic mould”, Magnetohydrodynamics, 47:1 (2011), 79–87
[3] Minakov A. V., Khatsayuk M. Yu., Pervukhin M. V., “Chislennoe modelirovanie dinamiki svobodnoi poverkhnosti i kristallizatsii rasplava v elektromagnitnom kristallizatore”, Induktsionnyi nagrev, 2014, no. 1(27), 37–42
[4] Kirpo M., Modeling of turbulence properties and particle transport in recirculated flows, PhD Thesis, University of Latvia, 2008
[5] Pesteanu O., Baake E., “Contribution to the simulation of free surface flows in electromagnetic field”, Devices and Systems, Materials and Technologies for the Future, Proc. The 54$^\mathrm{th}$ Internat. Sci. Colloquium on Information Technology and Electrical Eng. (2009), 361–362
[6] Spitans S., Jakovics A., Baake E., Nacke B., “Numerical modelling of free surface dynamics of conductive melt in the induction crucible furnace”, Magnetohydrodynamics, 45:4 (2010), 425–436
[7] Baake E., Muhlbauer A., Jakowitsch A., Andree W., “Extension of the $k-\varepsilon$ model for the numerical simulation of the melt flow in induction crucible furnaces”, Metallurgical and materials transactions B, 26B (1995), 529–536 | DOI
[8] Hinze J. O., Turbulence, McGraw-Hill Publishing Co., New York, 1975
[9] Patankar S., Chislennye metody resheniya zadach teplomassoobmena i dinamiki zhidkosti, Atomizdat, M., 1984, 152 pp.
[10] Bystrov Yu. A., Isaev S. A., Kudryavtsev H. A., Leontev A. I., Chislennoe modelirovanie vikhrevoi intensifikatsii teploobmena v paketakh trub, Sudostroenie, SPb., 2005, 392 pp.
[11] Ferziger J. H., Peric M., Computational methods for fluid dynamics, Springer Verlag, Berlin, 2002 | MR | Zbl
[12] Menter F. R., “Two equation eddy viscosity turbulence models for engineering applications”, AIAA J., 32:8 (1994), 1598–1605 | DOI
[13] Menter F. R., “Review of the SST turbulence model experience from an industrial perspective”, Internat. J. Comput. Fluid Dynamics, 23 (2009), 20–35 | DOI
[14] Hirt C. W., “Volume of fluid (VOF). Method for the dynamics of free boundaries”, J. Comput. Phys., 39 (1981), 201–226 | DOI
[15] Minakov A. V., “Numerical algorithm for moving-boundary fluid dynamics problems and its testing”, Comput. Math. Math. Phys., 54:10 (2014), 1560–1570 | DOI | MR | Zbl
[16] Brackbill J. U., Kothe D. B., Zemach C. A., “Continuum method for modeling surface tension”, J. Comput. Phys., 100 (1992), 335–354 | DOI | MR | Zbl
[17] Gavrilov A. A., Minakov A. V., Dekterev A. A., Rudyak V. Ya., “A numerical algorithm for modeling laminar flows in an annular channel with eccentricity”, Sib. Zh. Ind. Mat., 13:4 (2010), 3–14 | Zbl
[18] Tsvetkov F. F., Grigorev B. A., Teplomassoobmen, Izd-vo MEI, M., 2005
[19] Landau L. D., Livshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982, 620 pp.
[20] Rudyak V. Ya., Minakov A. V., Gavrilov A. A., Dekterev A. A., “Application of new numerical algorithm of solving the Navier–Stokes equations for modeling the work of a viscometer of the physical pendulum type”, Thermophysics Aeromechanics, 15 (2008), 333–345 | DOI
[21] Leonard B. P., “A stable and accurate convective modeling procedure based on quadratic upstream interpolation”, Comp. Math. Appl. Mech. Engng., 19 (1979), 59–98 | DOI | Zbl
[22] Rkhi S. M., Chou U. L., “Chislennyi raschet turbulentnogo obtekaniya profilya s otryvom u zadnei kromki”, Per. s angl., Aerokosmicheskaya tekhn., 2:7 (1984), 33–43
[23] Trottenberg U., Cornelis W., Oosterlee, Anton Schüller Multigrid, Academic Press, 2001 | MR
[24] Ubbink O., Numerical prediction of two fluid systems with sharp interfaces, PhD. Thesis, Imperial College of Science, Technology and Medicine, London, England, 1997
[25] Hinatsu M., “Two-phase flows for joint research”, Proceedings of SRI-TUHH mini workshop on numerical simulation of two-phase flows, National Maritime Research Institute, 2001
[26] Neilsen K. B., Numerical prediction of green water loads on ships, PhD. Thesis, Technical university of Denmark, 2003, 172 pp.
[27] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1970, 840 pp. | MR
[28] Gau C., Viskanta R., “Melting and solidification of a pure metal from a vertical wall”, Transactions of ASME: Journal of Heat Transfer, 108 (1986), 171–174 | DOI