@article{ZVMMF_2015_55_12_a1,
author = {D. A. Budzko and A. Cordero and J. R. Torregrosa},
title = {New family of iterative methods based on the {Ermakov{\textendash}Kalitkin} scheme for solving nonlinear systems of equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1986--1998},
year = {2015},
volume = {55},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a1/}
}
TY - JOUR AU - D. A. Budzko AU - A. Cordero AU - J. R. Torregrosa TI - New family of iterative methods based on the Ermakov–Kalitkin scheme for solving nonlinear systems of equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1986 EP - 1998 VL - 55 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a1/ LA - ru ID - ZVMMF_2015_55_12_a1 ER -
%0 Journal Article %A D. A. Budzko %A A. Cordero %A J. R. Torregrosa %T New family of iterative methods based on the Ermakov–Kalitkin scheme for solving nonlinear systems of equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1986-1998 %V 55 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a1/ %G ru %F ZVMMF_2015_55_12_a1
D. A. Budzko; A. Cordero; J. R. Torregrosa. New family of iterative methods based on the Ermakov–Kalitkin scheme for solving nonlinear systems of equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 12, pp. 1986-1998. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_12_a1/
[1] Petković M., Neta V., Petković L., Dzunić J., Multipoint methods for solving nonlinear equations, Academic Press, New York, 2012
[2] Cordero A., Lotfi T., Mahdiani K., Torregrosa J. R., “Two optimal general classes of iterative methods with eighth-order”, Acta Applicandae Mathematicae, 2014 | DOI | MR
[3] Artidiello S., Cordero A., Torregrosa J. R., Vassileva M. P., “Optimal high-order methods for solving nonlinear equations”, J. Applied Math., 2014, 591638 | DOI | MR
[4] Popuzin V. V., Sumbatyan M. A., Tanyushin R. A., “Bystryi iteratsionnyi metod v zadache o vzaimodeistvii voln s sistemoi tonkikh ekranov”, Zh. vychisl. matem. i matem. fiz., 53:8 (2013), 1374–1386 | DOI | Zbl
[5] Ermakov V. V., Kalitkin N. N., “Optimalnyi shag i regulyarizatsiya metoda Nyutona”, Zh. vychisl. matem. i matem. fiz., 21:2 (1981), 491–497 | MR | Zbl
[6] Zhanlav T., Puzynin I. V., “O skhodimosti iteratsii na osnove nepreryvnogo analoga metoda Nyutona”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 846–856 | MR | Zbl
[7] Madorskii V. M., Kvazinyutonovskie protsessy dlya resheniya nelineinykh uravnenii, BrGU, Brest, 2005
[8] Traub J. F., Iterative methods for the solution of equations, Prentice-Hall, Englewood Cliffs, 1964 | MR | Zbl
[9] Jarratt P., “Some fourth order multipoint iterative methods for solving equations”, Math. Comput., 20:95 (1966), 434–437 | DOI | Zbl
[10] Budzko D. A., Prokopenya A. N., “On the stability of equilibrium positions in the circular restricted four-body problem”, Lect. Notes in Computer Sci., 6885, 2011, 88–100 | DOI | Zbl
[11] Budzko D. A., Prokopenya A. N., “Stability of equilibrium positions in the spatial circular restricted four-body problem”, Lect. Notes in Computer Sci., 7442, 2012, 72–83 | DOI | Zbl
[12] Blanchard P., “The dynamics of Newton's method”, Proc. of Symposia in Applied Meth., 49 (1994), 139–154 | DOI | MR | Zbl
[13] Devaney R. L., “The Mandelbrot Set, the Farey Tree and the Fibonacci sequence”, Am. Math. Monthly, 106:4 (1999), 289–302 | DOI | MR | Zbl
[14] Chicharro F. I., Cordero A., Torregrosa J. R., “Drawing dynamical and parameters planes of iterative families and methods”, The Sci. World J., 2013, 780153
[15] Cordero A., Torregrosa J. R., “Variants of Newton's method using fifth-order quadrature formulas”, Appl. Math. Comput., 190 (2007), 686–698 | DOI | MR | Zbl
[16] Ortega J. M., Rheinboldt W. G., Iterative solutions of nonlinear equations in several variables, Academic Press, New-York, 1970 | MR
[17] Hermite C., “Sur la formule d'interpolation de Lagrange”, J. Reine Angew. Math., 84 (1878), 70–79 | DOI | MR
[18] Budzko D. A., Prokopenya A. N., “Symbolic-numerical analysis of equilibrium solutions in a restricted four-body problem”, Program. Comput. Software, 36:2 (2010), 68–74 | DOI | MR | Zbl
[19] Budzko D. A., Prokopenya A. N., “Symbolic-numerical methods for searching equilibrium states in a restricted four-body problem”, Program. Comput. Software, 39:2 (2013), 74–80 | DOI | MR | Zbl