Difference scheme for a singularly perturbed parabolic convection–diffusion equation in the presence of perturbations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11, pp. 1876-1892 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An initial–boundary value problem is considered for a singularly perturbed parabolic convection–diffusion equation with a perturbation parameter $\varepsilon$ $(\varepsilon\in(0, 1])$ multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge $\varepsilon$-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if $N^{-1}\ll\varepsilon$ and $N_0^{-1}\ll1$, where $N$ and $N_0$ are the numbers of grid intervals in $x$ and $t$, respectively, the scheme is not $\varepsilon$-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the “parameters” of the difference scheme and of the computer (namely, on $\varepsilon$, $N$, $N_0$, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.
@article{ZVMMF_2015_55_11_a6,
     author = {G. I. Shishkin},
     title = {Difference scheme for a singularly perturbed parabolic convection{\textendash}diffusion equation in the presence of perturbations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1876--1892},
     year = {2015},
     volume = {55},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a6/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Difference scheme for a singularly perturbed parabolic convection–diffusion equation in the presence of perturbations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1876
EP  - 1892
VL  - 55
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a6/
LA  - ru
ID  - ZVMMF_2015_55_11_a6
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Difference scheme for a singularly perturbed parabolic convection–diffusion equation in the presence of perturbations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1876-1892
%V 55
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a6/
%G ru
%F ZVMMF_2015_55_11_a6
G. I. Shishkin. Difference scheme for a singularly perturbed parabolic convection–diffusion equation in the presence of perturbations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11, pp. 1876-1892. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a6/

[1] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[2] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman and Hall/CRC, Boca Raton, 2000 | MR | Zbl

[3] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems, Springer Series in Comput. Math., 24, Second Edition, Springer, Berlin, 2008 | MR | Zbl

[4] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Chapman Hall/CRC Monographs and surveys in pure and applied mathematics, 140, CRC Press, Boca Raton, 2009 | MR | Zbl

[5] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, Revised Edition, World Scientific, Singapore, 2012 | MR | Zbl

[6] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[7] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[8] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[9] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[10] Shishkin G. I., “Obuslovlennost raznostnoi skhemy metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo uravneniya konvektsii-diffuzii”, Tr. IMM UrO RAN, 18, no. 2, 2012, 291–304

[11] Shishkin G. I., “Stability of difference schemes on uniform grids to perturbations of the data for a singularly perturbed convection-diffusion equation”, Russian. J. Numerical Analysis and Math. Modelling, 28:4 (2013), 381–417 | DOI | MR

[12] Shishkin G. I., “Difference schemes of the solution decomposition method for a singularly perturbed parabolic reaction-diffusion equation”, Russian J. Numerical Analysis and Math. Modelling, 25:3 (2010), 261–278 | DOI | MR | Zbl

[13] Shishkin G. I., “Obuslovlennost i ustoichivost raznostnykh skhem na ravnomernykh setkakh dlya singulyarno vozmuschennogo parabolicheskogo uravneniya konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 53:4 (2013), 575–599 | DOI | Zbl

[14] Kalitkin N. N., Chislennye metody, Nauka, M., 1978

[15] Wesseling P., Principles of computational fluid dynamics, Springer, Berlin, 2001 | MR

[16] Shishkin G. I., “Ustoichivost standartnoi skhemy dlya singulyarno vozmuschennogo uravneniya konvektsii-diffuzii”, Dokl. AN, 448:6 (2013), 648–650 | DOI | Zbl

[17] Shishkin G., “Stability of difference schemes on uniform grids for a singularly perturbed convection-diffusion equation”, Numerical Math. Advanced Applications 2011, Proc. of ENUMATH (2011), eds. Cangiani A. et al., Springer, Berlin–Heidelberg, 2013, 293–301 | DOI | MR | Zbl

[18] Shishkin G. I., “Kompyuternaya raznostnaya skhema dlya singulyarno vozmuschennogo uravneniya konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 54:8 (2014), 1256–1269 | DOI | MR | Zbl

[19] Shishkin G. I., “Standartnaya skhema dlya singulyarno vozmuschennogo parabolicheskogo uravneniya konvektsii-diffuzii pri kompyuternykh vozmuscheniya”, Dokl. AN, 462:1 (2015), 26–29 | DOI | MR | Zbl

[20] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR

[21] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya bazovykh znanii, M., 2001

[22] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh uravnenii s konvektivnymi chlenami pri vozmuschenii dannykh”, Zh. vychisl. matem. i matem. fiz., 41:5 (2001), 692–707 | MR | Zbl

[23] Shishkin G. I., “Obuslovlennost raznostnykh skhem dlya singulyarno vozmuschennogo parabolicheskogo uravneniya konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 813–830 | MR | Zbl

[24] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR