A global attractor for one semilinear hyperbolic equation with memory operator
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11, pp. 1857-1869 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The mixed problem for a semilinear hyperbolic equation with a memory operator is considered. The existence of a minimal global attractor for this problem is proved.
@article{ZVMMF_2015_55_11_a4,
     author = {A. B. Aliyev and S. E. Isayeva},
     title = {A global attractor for one semilinear hyperbolic equation with memory operator},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1857--1869},
     year = {2015},
     volume = {55},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a4/}
}
TY  - JOUR
AU  - A. B. Aliyev
AU  - S. E. Isayeva
TI  - A global attractor for one semilinear hyperbolic equation with memory operator
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1857
EP  - 1869
VL  - 55
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a4/
LA  - ru
ID  - ZVMMF_2015_55_11_a4
ER  - 
%0 Journal Article
%A A. B. Aliyev
%A S. E. Isayeva
%T A global attractor for one semilinear hyperbolic equation with memory operator
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1857-1869
%V 55
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a4/
%G ru
%F ZVMMF_2015_55_11_a4
A. B. Aliyev; S. E. Isayeva. A global attractor for one semilinear hyperbolic equation with memory operator. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11, pp. 1857-1869. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a4/

[1] Kenmochi N., Visintin A., “Asymptotic stability for nonlinear evolution problems with hysteresis”, Europ. J. Appl. Math., 5 (1994), 39–56 | DOI | MR | Zbl

[2] Krejci P., “Hysterezis and periodic solutions of semilinear and quasilinear wave equations”, Math. Z., 193 (1986), 247–264 | DOI | MR | Zbl

[3] Krejci P., “Asymptotic stability of periodic solutions to the wave equation with hysteresis”, Models of hysteresis, ed. A. Visintin, Longman-Harlow, London, 1993, 77–90 | MR | Zbl

[4] Arosio A., Linear second order differential equations in Hilbert spaces. Existence, uniqueness and regularity of the solution to the Cauchy problem. Asymptotic behavior as $t\to\infty$, Inst. Mat. “Leonida Tonelli”, Univ. degli Studi di Pisa, February 1981

[5] Borzdyko V. I., “Uniqueness theorem for differential equations with hysteresis nonlinearities”, Differential Equat., 23 (1987), 623–626 | MR | Zbl

[6] Kopfova J., “Uniqeness theorem for a Cauchy problem with hysteresis”, Proc. American Math. Soc., 127:12 (1999), 3527–3532 | DOI | MR | Zbl

[7] Kopfova J., “Periodic solutions and asymptotic behavior of a PDE with hysteresis in the source term”, Rocky Mountain J. Math., 36:2 (2006), 539–554 | DOI | MR | Zbl

[8] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[9] Korpusov M. O., Sveshnikov A. G., “Ob odnoi nachalno-kraevoi zadache dlya silno nelineinogo dissipativnogo uravneniya sobolevskogo tipa”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1860–1877 | MR | Zbl

[10] Korpusov M. O., Sveshnikov A. G., “O razrushenii resheniya odnogo novogo statsionarnogo uravneniya sobolevskogo tipa”, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 876–893 | MR | Zbl

[11] Visintin A., “Hysteresis and semigroups”, Models of Hysteresis, ed. A. Visintin, Longman, Harlow, 1993, 192–206 | MR | Zbl

[12] Hilpert M., “On uniqueness for evolution problems with hysteresis”, Mathematical Models for Phase Change Problems, ed. J. F. Rodrigues, Birkhauser, Basel, 1989 | MR

[13] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[14] Visintin A., Differential models of hysteresis, Springer, New York, 1993 | MR

[15] Isayeva S. E., “The mixed problem for one semilinear hyperbolic equation with memory”, Transactions of NAS of Azerbaijan, XXX:1 (2010), 105–112 | MR | Zbl

[16] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorakh dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (2009), 25–60

[17] Isayeva S. E., “The existence of an absorbing set for one mixed problem with memory”, Transactions of NAS of Azerbaijan, XXXIII:1 (2013), 27–35

[18] Chueshov I., Lasiecka I., “Attractors for second'order evolution equations with a nonlinear damping”, J. Dynam. Differential Equations, 16:2 (2004), 469–512 | DOI | MR | Zbl

[19] Lasiecka I., Ruzmaikina A. R., “Finite dimensionality and regularity of attractors for 2'D semilinear wave equation with nonlinear dissipation”, J. Math. Anal. Appl., 270 (2002), 16–50 | DOI | MR | Zbl

[20] Khanmamedov A. Kh., “Global attractors for wave equations with nonlinear interior damping and critical exponents”, J. Differential Equations, 230 (2006), 702–719 | DOI | MR | Zbl