A numerical method for solving systems of nonlinear equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11, pp. 1827-1834 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under certain conditions on nonlinear equations in a real finite-dimensional space, a numerical method for solving such equations is proposed. The method is based on the use of an auxiliary differential equation. A fairly rough approximate solution to this equation can be refined by applying Newton's method to the original problem. The result produced by the auxiliary equation is automatically a good initial approximation for Newton’s method. This combination ensures that the original problem can be solved to the required accuracy starting from any initial approximation.
@article{ZVMMF_2015_55_11_a2,
     author = {A. A. Abramov and L. F. Yukhno},
     title = {A numerical method for solving systems of nonlinear equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1827--1834},
     year = {2015},
     volume = {55},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a2/}
}
TY  - JOUR
AU  - A. A. Abramov
AU  - L. F. Yukhno
TI  - A numerical method for solving systems of nonlinear equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1827
EP  - 1834
VL  - 55
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a2/
LA  - ru
ID  - ZVMMF_2015_55_11_a2
ER  - 
%0 Journal Article
%A A. A. Abramov
%A L. F. Yukhno
%T A numerical method for solving systems of nonlinear equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1827-1834
%V 55
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a2/
%G ru
%F ZVMMF_2015_55_11_a2
A. A. Abramov; L. F. Yukhno. A numerical method for solving systems of nonlinear equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11, pp. 1827-1834. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a2/

[1] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[2] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958

[3] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR

[4] Abramov A. A., Yukhno L. F., “Chislennoe reshenie zadachi Koshi dlya uravnenii Penleve. I; II”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 379–387 | MR | Zbl