On pseudo-Boolean polynomials
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11, pp. 1952-1958 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A pseudo-Boolean function is an arbitrary mapping of the set of binary $n$-tuples to the real line. Such functions are a natural generalization of classical Boolean functions and find numerous applications in various applied studies. Specifically, the Fourier transform of a Boolean function is a pseudo-Boolean function. A number of facts associated with pseudo-Boolean polynomials are presented, and their applications to well-known discrete optimization problems are described.
@article{ZVMMF_2015_55_11_a12,
     author = {V. K. Leont'ev},
     title = {On {pseudo-Boolean} polynomials},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1952--1958},
     year = {2015},
     volume = {55},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a12/}
}
TY  - JOUR
AU  - V. K. Leont'ev
TI  - On pseudo-Boolean polynomials
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1952
EP  - 1958
VL  - 55
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a12/
LA  - ru
ID  - ZVMMF_2015_55_11_a12
ER  - 
%0 Journal Article
%A V. K. Leont'ev
%T On pseudo-Boolean polynomials
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1952-1958
%V 55
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a12/
%G ru
%F ZVMMF_2015_55_11_a12
V. K. Leont'ev. On pseudo-Boolean polynomials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11, pp. 1952-1958. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a12/

[1] Beresnev V. L., Diskretnye zadachi razmescheniya i polinomy ot bulevykh peremennykh, In-t Matem. SO RAN, Novosibirsk, 2005, 408 pp.

[2] Hammer P., Rudeanu S., “Pseudo-Boolean programming”, Operat. Res., 17:2 (1969), 233–261 | DOI | MR | Zbl

[3] Stenli R., Perechislitelnaya kombinatorika, Mir, M., 1980, 440 pp. | MR

[4] Zenkin A. I., Leontev V. K., “Ob odnoi neklassicheskoi zadache raspoznavaniya”, Zh. vychisl. matem. i matem. fiz., 24:6 (1984), 925–931 | MR | Zbl

[5] Leontev V. K., “Odna teorema o monotonnykh funktsiyakh”, Diskretnyi analiz, 1974, no. 6, 61–64