A combined approach to the estimation of statistical error of the direct simulation Monte Carlo method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11, pp. 1938-1951 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Presently, the direct simulation Monte Carlo (DSMC) method is widely used for solving rarefied gas dynamics problems. As applied to steady-state problems, a feature of this method is the use of dependent sample values of random variables for the calculation of macroparameters of gas flows. A new combined approach to estimating the statistical error of the method is proposed that does not practically require additional computations, and it is applicable for any degree of probabilistic dependence of sample values. Features of the proposed approach are analyzed theoretically and numerically. The approach is tested using the classical Fourier problem and the problem of supersonic flow of rarefied gas through permeable obstacle.
@article{ZVMMF_2015_55_11_a11,
     author = {M. Yu. Plotnikov and E. V. Shkarupa},
     title = {A combined approach to the estimation of statistical error of the direct simulation {Monte} {Carlo} method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1938--1951},
     year = {2015},
     volume = {55},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a11/}
}
TY  - JOUR
AU  - M. Yu. Plotnikov
AU  - E. V. Shkarupa
TI  - A combined approach to the estimation of statistical error of the direct simulation Monte Carlo method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1938
EP  - 1951
VL  - 55
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a11/
LA  - ru
ID  - ZVMMF_2015_55_11_a11
ER  - 
%0 Journal Article
%A M. Yu. Plotnikov
%A E. V. Shkarupa
%T A combined approach to the estimation of statistical error of the direct simulation Monte Carlo method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1938-1951
%V 55
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a11/
%G ru
%F ZVMMF_2015_55_11_a11
M. Yu. Plotnikov; E. V. Shkarupa. A combined approach to the estimation of statistical error of the direct simulation Monte Carlo method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11, pp. 1938-1951. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a11/

[1] Bird G. A., “Perception of numerical methods in rarefied gas dynamics”, Proc. of 16-th Intern. Symp. on Rarefied Gas Dynamics, Progress in Astro and Aero, 118, 1989, 211–226

[2] Ivanov M. S., Rogasinsky S. V., “Analysis of the numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics”, Soviet J. Numer. Anal. Math. Modelling, 3:6 (1988), 453–465 | DOI | MR | Zbl

[3] Titarev V. A., Shakhov E. M., “Effektivnyi metod resheniya zadachi o techenii razrezhennogo gaza v ploskom kanale bolshoi konechnoi dliny”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 288–303 | MR | Zbl

[4] Cheremisin F. G., “Reshenie kineticheskogo uravneniya Boltsmana dlya vysokoskorostnykh techenii”, Zh. vychisl. matem. i matem. fiz., 46:2 (2006), 329–343 | MR

[5] Ivanov M. S., Gimelshein S. F., “Computational hypersonic rarefied flows”, Annu. Rev. Fluid Mech., 30 (1988), 469–505 | DOI | MR

[6] Itina T. E., Tokarev V. N., Marine W., Autric M., “Monte Carlo simulation study of the effects of nonequilibrium chemical reactions during pulsed laser desorption”, J. Chem. Phys., 106 (1997), 8905–8912 | DOI

[7] Morozov A. A., “Dynamics of pulsed expansion of polyatomic gas cloud: Internal-translational energy transfer contribution”, Phys. Fluids, 19 (2007), 087101, 10 pp. | DOI | Zbl

[8] Maltsev R. V., Plotnikov M. Yu., Rebrov A. K., “Shock structure in low density gas mixture flows over cylinders and plates”, Phys. Fluids, 19 (2007), 10106102, 7 pp. | DOI

[9] Rebrov A. K., Maltsev R. V., Safonov A. I., Timoshenko N. I., “Activated gas jet deposition”, Thin Solid Films, 519 (2011), 4542–4544 | DOI

[10] Sabelfeld K. K., Rogansinsky S. V., Kolodko A. A., Levykin A. I., “Stochastic algorithms for solving Smoluchovsky coagulation equation and applications to aerosol growth simulation”, Monte Carlo Methods and Appl., 2 (1996), 41–87 | MR | Zbl

[11] Bird G. A., Molecular gas dynamics and the direct simulation of gas flows, Clarendon Press, Oxford, 1994 | MR

[12] Fan J. (eds.), Proc. of 29-th Intern. Symp. on Rarefied Gas Dynamics (Xi'an, China, July 13–18, 2014), AIP Conference Proc., 1628, 2014

[13] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Izd. tsentr “Akademiya”, M., 2006

[14] Rader D. J., Gallis M. A., Torczynski J. R., Wagner W., “DSMC convergence behavior of the hard-sphere-gas thermal conductivity for Fourier heat flow”, Phys. Fluids, 18 (2006), 077102 | DOI

[15] Rogasinsky S. V., “Statistical modeling of the solution of the nonlinear Boltzmann equation in the spatially inhomogeneous case”, Russ. J. Numer. Anal. Math. Modelling, 24:5 (2009), 495–513 | DOI | MR | Zbl

[16] Plotnikov M. Yu., Shkarupa E. V., “Some approaches to error analysis and optimization of the DSMC method”, Russ. J. Numer. Anal. Math. Modelling, 25:2 (2010), 147–167 | DOI | MR | Zbl

[17] Hadjiconstantinou N., Garcia A., Bazant M., He G., “Statistical error in particle simulations of hydrodynamic phenomena”, J. Comp. Phys., 187 (2003), 274–297 | DOI | MR | Zbl

[18] Rogasinsky S. V., Levin D. A., Ivanov M. S., “Statistical errors of DSMC results for rarefied gas flows”, Proc. of 25-th Intern. Symp. on Rarefied Gas Dynamics, Publish House of the Siberian Branch of Russian Academy of Sciences, Novosibirsk, 2007, 391–395

[19] Plotnikov M. Yu., Shkarupa E. V., “Otsenka statisticheskoi pogreshnosti metoda pryamogo statisticheskogo modelirovaniya”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 352–361 | MR | Zbl

[20] Garcia A., “Estimating hydrodynamic quantities in the presence of microscopic fluctuations”, Commun. Appl. Math. Comput. Sci., 1 (2006), 53–78 | DOI | MR | Zbl

[21] Plotnikov M. Yu., Shkarupa E. V., “Theoretical and numerical analysis of approaches to evaluation of statistical error of the DSMC method”, Comput. Fluids, 105 (2014), 251–261 | DOI | MR

[22] Nagaev S. V., “Nekotorye predelnye teoremy dlya odnorodnykh tsepei Markova”, Teoriya veroyatn. i ee primen., 2:4 (1957), 389–416 | MR

[23] Landau L. D., Lifshitz E. M., Statistical Physics, Pergamon Press, Oxford, 1980 | MR

[24] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[25] Plotnikov M. Yu., Shkarupa E. V., “Comparison of different approaches to evaluation of statistical error of the DSMC method”, Proc. 28-th Intern. Symp. on Rarefied Gas Dynamics (Melville, New York, 2012), v. 1, AIP Conference Proc., 1501, 503–510

[26] Plotnikov M. Yu., Shkarupa E. V., “Selection of sampling numerical parameters for the DSMC method”, Comput. Fluids, 58 (2012), 102–111 | DOI | MR