Effects of partial slip on the peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present analysis, we have modeled the governing equations of two dimensional hyperbolic tangent fluid model under the assumptions of long wavelength and low Reynolds number. The flow is investigated in a wave frame of reference moving with the velocity of the wave. The governing equations of hyperbolic tangent fluid have been solved using regular perturbation method. The expression for pressure rise has been calculated using numerical integrations. The behavior of different physical parameters have been discussed graphically.
@article{ZVMMF_2015_55_11_a10,
     author = {Safia Akram and S. Nadeem},
     title = {Effects of partial slip on the peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1937},
     year = {2015},
     volume = {55},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a10/}
}
TY  - JOUR
AU  - Safia Akram
AU  - S. Nadeem
TI  - Effects of partial slip on the peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1937
VL  - 55
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a10/
LA  - en
ID  - ZVMMF_2015_55_11_a10
ER  - 
%0 Journal Article
%A Safia Akram
%A S. Nadeem
%T Effects of partial slip on the peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1937
%V 55
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a10/
%G en
%F ZVMMF_2015_55_11_a10
Safia Akram; S. Nadeem. Effects of partial slip on the peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a10/

[1] T. D. Brown, T. K. Hung, “Computational and experimental investigations of two dimensional non linear peristaltic flows”, J. Fluid Mech., 83 (1977), 249–272 | DOI | Zbl

[2] S. Nadeem, S. Akram, “Peristaltic flow of a Williamson fluid in an asymmetric channel”, Commun. Nonlinear Sci. Numer. Simul. | DOI | MR

[3] S. Akram, S. Nadeem, “Influence of induced magnetic field, heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: Closed form solutions”, J. Magn. Magn. Mater., 328 (2013), 11–20 | DOI | MR

[4] S. Akram, S. Nadeem, M. Hanif, “Numerical, analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field”, J. Magn. Magn. Mater., 346 (2013), 142–151 | DOI

[5] Kh. S. Mekheimer, Y. Abd elmaboud, “The influence of heat transfer, magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an endoscope”, Phys. Lett. A, 372 (2008), 1657–1665 | DOI | Zbl

[6] T. Hayat, N. Ali, “Peristaltically induced motion of a MHD third grade fluid in a deformable tube”, Physica A, 370 (2006), 225–239 | DOI

[7] S. Nadeem, S. Akram, Noreen Sher Akbar, “Simulation of heat, chemical reactions on peristaltic flow of a Williamson fluid in an inclined asymmetric channel”, Iran. J. Chem. Chem. Eng., 32 (2013), 93–107

[8] Kh. S. Mekheimer, “Effect of the induced magnetic field on peristaltic flow of a couple stress fluid”, Phys. Lett. A, 372 (2008), 4271–4278 | DOI | Zbl

[9] A. H. Shapiro, M. Y. Jaffrin, S. L. Weinberg, “Peristaltic pumping with long wave length at low Reynolds number”, J. Fluid Mech., 37 (1969), 799–825 | DOI

[10] T. W. Latham, M. Sci. Thesis, Massachusetts Institute of Technology, Cambridge, 1966

[11] S. Akram, S. Nadeem, “Significance of nanofluid, partial slip on the peristaltic transport of a Jeffrey fluid model in an asymmetric channel with different wave forms”, IEEE Trans. Nanotech., 13 (2014), 375–385 | DOI

[12] M. Mishra, A. R. Rao, “Peristaltic transport of a Newtonian fluid in an asymmetric channel”, Z. Angew. Math. Phys., 54 (2004), 532–550 | DOI | MR

[13] S. Akram, Kh. S. Mekheimer, S. Nadeem, “Influence of lateral walls on peristaltic flow of a couple stress fluid in a non-uniform rectangular due”, Appl. Math. Inf. Sci., 3 (2014), 1127–1133 | DOI | MR

[14] M. H. Haroun, “Effect of Deborah number, phase difference on peristaltic transport in an asymmetric channel”, Commun. Nonlinear Sci. Numer. Simul., 12 (2007), 1464–1480 | DOI | MR | Zbl

[15] S. Akram, S. Nadeem, “Consequence of nanofluid on Peristaltic transport of a hyperbolic Tangent fluid model in the occurrence of apt (tending) magnetic field”, J. Magn. Magn. Mater., 358–359 (2014), 183–191 | DOI

[16] G. Radhakrishnamacharya, Ch. Srinivasulu, “Influence of wall properties on peristaltic transport with heat transfer”, C. R. Mecanique, 335 (2007), 369–373 | DOI | Zbl

[17] T. Hayat, Q. Hussain, N. Ali, “Influence of partial slip on the peristaltic flow in a porous medium”, Physica A, 387 (2008), 3399–3409 | DOI | MR

[18] A. Ebaid, “Effects of magnetic field, wall slip conditions on the peristaltic transport of a Newtonian fluid in an asymmetric channel”, Phys. Lett. A, 372 (2008), 4493–4489 | DOI | MR

[19] T. Hayat, M. Umar Qureshi, N. Ali, “The influence of slip on the peristaltic motion of a third order fluid in an asymmetric channel”, Phys. Lett. A, 372 (2008), 2653–2664 | DOI | Zbl

[20] S. Nadeem, S. Akram, “Slip effects on the peristaltic flow of a Jeffrey fluid in an asymmetric channel under the effect of induced magnetic field”, Int. J. Numer. Methods Fluids | DOI

[21] L. Ai, K. Vafai, “An investigation of Stokes second problem for non-Newtonian fluids”, Numer. Heat Transfer, Part A, 47 (2005), 955–980 | DOI

[22] S. Nadeem, S. Akram, “Peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel”, Z. Naturforschung A, 64 (2009), 559–567