@article{ZVMMF_2015_55_11_a1,
author = {Yu. N. Kiselev and M. V. Orlov and S. M. Orlov},
title = {Boundary value problem of {Pontryagin's} maximum principle in a two-sector economy model with an integral utility function},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1812--1826},
year = {2015},
volume = {55},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a1/}
}
TY - JOUR AU - Yu. N. Kiselev AU - M. V. Orlov AU - S. M. Orlov TI - Boundary value problem of Pontryagin's maximum principle in a two-sector economy model with an integral utility function JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1812 EP - 1826 VL - 55 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a1/ LA - ru ID - ZVMMF_2015_55_11_a1 ER -
%0 Journal Article %A Yu. N. Kiselev %A M. V. Orlov %A S. M. Orlov %T Boundary value problem of Pontryagin's maximum principle in a two-sector economy model with an integral utility function %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1812-1826 %V 55 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a1/ %G ru %F ZVMMF_2015_55_11_a1
Yu. N. Kiselev; M. V. Orlov; S. M. Orlov. Boundary value problem of Pontryagin's maximum principle in a two-sector economy model with an integral utility function. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11, pp. 1812-1826. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a1/
[1] Kiselev Yu. N., Orlov M. V., “Issledovanie odnoi dvukhsektornoi modeli ekonomicheskogo rosta s proizvodstvennoi funktsiei Kobba–Duglasa”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibern., 2010, no. 2, 56–63 | MR
[2] Kiselev Yu. N., Orlov M. V., “Optimalnaya programma raspredeleniya resursov v dvukhsektornoi ekonomicheskoi modeli s proizvodstvennoi funktsiei Kobba–Duglasa”, Differents. ur-niya, 46:12 (2010), 1749–1765 | MR | Zbl
[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961
[4] Iwasa Y., Roughgarden J., “Shoot/root balance of plants: optimal growth of a system with many vegitative organs”, Theoretical Population Biology, 25 (1984), 78–105 | DOI | MR | Zbl
[5] Kiselev Yu. N., Orlov M. V., “Optimalnaya programma raspredeleniya resursov v dvukhsektornoi ekonomicheskoi modeli s proizvodstvennoi funktsiei Kobba-Duglasa pri razlichnykh koeffitsientakh amortizatsii”, Differents. ur-niya, 48:12 (2012), 1642–1657 | Zbl
[6] Kiselev Yu. N., Orlov M. V., Orlov S. M., “Optimalnaya programma raspredeleniya resursov v dvukhsektornoi ekonomicheskoi modeli s funktsionalom integralnogo tipa pri razlichnykh koeffitsientakh amortizatsii”, Differents. ur-niya, 51:5 (2015), 671–687 | DOI | Zbl
[7] Belenkii V. Z., Optimizatsionnye modeli ekonomicheskoi dinamiki. Ponyatiinyi apparat. Odnomernye modeli, Nauka, M., 2007
[8] Kiselev Yu. N., “Dostatochnye usloviya optimalnosti v terminakh konstruktsii printsipa maksimuma Pontryagina”, Matematicheskie modeli v ekonomike i biologii, MAKS Press, M., 2003, 57–67 | MR