@article{ZVMMF_2015_55_11_a0,
author = {R. V. Efremov},
title = {Convergence of hausdorff approximation methods for the {Edgeworth{\textendash}Pareto} hull of a compact set},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1803--1811},
year = {2015},
volume = {55},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a0/}
}
TY - JOUR AU - R. V. Efremov TI - Convergence of hausdorff approximation methods for the Edgeworth–Pareto hull of a compact set JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1803 EP - 1811 VL - 55 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a0/ LA - ru ID - ZVMMF_2015_55_11_a0 ER -
%0 Journal Article %A R. V. Efremov %T Convergence of hausdorff approximation methods for the Edgeworth–Pareto hull of a compact set %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1803-1811 %V 55 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a0/ %G ru %F ZVMMF_2015_55_11_a0
R. V. Efremov. Convergence of hausdorff approximation methods for the Edgeworth–Pareto hull of a compact set. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 11, pp. 1803-1811. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_11_a0/
[1] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007
[2] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[3] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Kluwer Academic Publishers, Boston, 2004 | MR | Zbl
[4] Sawaragi Y., Nakayama H., Tanino T., Theory of multiobjective optimization, Orlando Academic Press, 1985 | MR | Zbl
[5] Bushenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 1982
[6] Chernykh O. L., “Postroenie vypukloi obolochki konechnogo mnozhestva tochek pri priblizhennykh vychisleniyakh”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1386–1396 | MR | Zbl
[7] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR
[8] Kamenev G. K., “Issledovanie odnogo algoritma approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 608–616 | MR | Zbl
[9] Efremov R. V., Kamenev G. K., “Apriornaya otsenka asimptoticheskoi effektivnosti odnogo klassa algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 23–32 | MR
[10] Chernykh O. L., “Approksimatsiya pareto-obolochki vypuklogo mnozhestva mnogogrannymi mnozhestvami”, Zh. vychisl. matem. i matem. fiz., 35:8 (1995), 1285–1294 | MR | Zbl
[11] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[12] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR
[13] Deza E. I., Deza M.-M., Entsiklopedicheskii slovar rasstoyanii, Nauka, M., 2008
[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[15] Karmanov V. G., Matematicheskoe programmirovanie, Nauka, M., 1975 | MR