Eigenmodes of a thin elastic layer between periodic rigid profiles
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1713-1726

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic expansions of the eigenfrequencies and eigenmodes of a thin three-dimensional elastic gasket clamped between two finite or infinite periodic rigid profiles are constructed. It is shown that the stresses are localized and concentrated near the point where the thickness of the gasket is maximal, and the character of a possible fracture is discussed. It is found that there are multiple zones of wave stopping in an elastic periodic layer and the eigenfrequencies at which elastic modes are trapped are condensed at a local perturbation of the waveguide shape.
@article{ZVMMF_2015_55_10_a9,
     author = {S. A. Nazarov},
     title = {Eigenmodes of a thin elastic layer between periodic rigid profiles},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1713--1726},
     publisher = {mathdoc},
     volume = {55},
     number = {10},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Eigenmodes of a thin elastic layer between periodic rigid profiles
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1713
EP  - 1726
VL  - 55
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a9/
LA  - ru
ID  - ZVMMF_2015_55_10_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Eigenmodes of a thin elastic layer between periodic rigid profiles
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1713-1726
%V 55
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a9/
%G ru
%F ZVMMF_2015_55_10_a9
S. A. Nazarov. Eigenmodes of a thin elastic layer between periodic rigid profiles. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1713-1726. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a9/