@article{ZVMMF_2015_55_10_a9,
author = {S. A. Nazarov},
title = {Eigenmodes of a thin elastic layer between periodic rigid profiles},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1713--1726},
year = {2015},
volume = {55},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a9/}
}
TY - JOUR AU - S. A. Nazarov TI - Eigenmodes of a thin elastic layer between periodic rigid profiles JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1713 EP - 1726 VL - 55 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a9/ LA - ru ID - ZVMMF_2015_55_10_a9 ER -
S. A. Nazarov. Eigenmodes of a thin elastic layer between periodic rigid profiles. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1713-1726. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a9/
[1] Nazarov S. A., “Uprugie volny, zakhvachennye odnorodnym anizotropnym polutsilindrom”, Matem. sbornik, 204:11 (2013), 99–130 | DOI | MR | Zbl
[2] Kamotskii I. V., Nazarov S. A., “O sobstvennykh funktsiyakh, lokalizovannykh okolo kromki tonkoi oblasti”, Problemy matem. analiza, 19, Nauchn. kniga, Novosibirsk, 1999, 105–148 | MR
[3] Freitas P., “Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and rhombi”, J. Functional Analysis, 251 (2007), 376–398 | DOI | MR | Zbl
[4] Friedlander L., Solomyak M., “On the spectrum of the Dirichlet Laplacian in a narrow strip”, Israel J. Math., 170 (2009), 337–354 | DOI | MR | Zbl
[5] Borisov D., Freitas P., “Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains”, Annales de l'institut Henri Poincare (C) Analyse non-lineaire, 26:2 (2009), 547–560 | DOI | MR | Zbl
[6] Borisov D., Freitas P., “Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in $\mathbb{R}^d$”, J. Functional Analysis, 258:3 (2010), 893–912 | DOI | MR | Zbl
[7] Nazarov S. A., “Spektralnye svoistva tonkogo sloya s dvoyakoperiodicheskim semeistvom istonchenii”, Teor. i matem. fiz., 174:3 (2013), 398–415 | DOI | Zbl
[8] Nazarov S. A., “Okolovershinnaya lokalizatsiya sobstvennykh funktsii zadachi Dirikhle v tonkikh mnogogrannikakh”, Sibirsk. matem. zh., 54:3 (2013), 655–672 | MR | Zbl
[9] Nazarov S. A., Perez M.-E., Taskinen J., Localization effect for Dirichlet eigenfunctions in thin non-smooth domains, Transactions of AMS, 2015
[10] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. Elektrodinamika sploshnykh sred, Nauka, M., 1982
[11] Berezin F. A., Shubin M. A., Uravnenie Shredingera, izd-vo MGU, M., 1983
[12] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973
[13] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974
[14] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980
[15] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for soluitons of elliptic partial differential equations satisfying general boundary conditions, 2”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl
[16] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | MR | Zbl
[17] Nazarov S. A., “Ob asimptotike spektra zadachi teorii uprugosti dlya tonkoi plastiny”, Sibirsk. matem. zh., 41:4 (2000), 895–912 | MR | Zbl
[18] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002
[19] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi matem. nauk, 37:4 (1982), 3–52
[20] Skriganov M. M., “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. matem. in-ta im. V. A. Steklova AN SSSR, 171, Nauka, L., 1985
[21] Yoshitomi K., “Band gap of the spectrum in periodically curved quantum waveguides”, J. Differential Equations, 142:1 (1998), 123–166 | DOI | MR | Zbl
[22] Friedlander L., Solomyak M., “On the spectrum of narrow periodic waveguides”, Russ. J. Math. Phys., 15:2 (2008), 238–242 | DOI | MR | Zbl
[23] Nazarov S. A., “Primer mnozhestvennosti lakun v spektre periodicheskogo volnovoda”, Matem. sbornik, 201:4 (2010), 99–124 | DOI | MR | Zbl
[24] Nazarov S. A., Ruotsalainen K., Taskinen J., “Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps”, Applicable Anal., 89:1 (2010), 109–124 | DOI | MR | Zbl
[25] Nazarov S. A., “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sibirsk. matem. zh., 51:5 (2010), 1086–1101 | MR | Zbl
[26] Nazarov S. A., “Lakuny i sobstvennye chastoty v spektre periodicheskogo akusticheskogo volnovoda”, Akusticheskii zh., 59:3 (2013), 312–321 | DOI
[27] Nazarov S. A., “Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness”, C.R. Mecanique, 330 (2002), 603–607 | DOI | Zbl
[28] Babich V. M. Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972