Eigenmodes of a thin elastic layer between periodic rigid profiles
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1713-1726 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic expansions of the eigenfrequencies and eigenmodes of a thin three-dimensional elastic gasket clamped between two finite or infinite periodic rigid profiles are constructed. It is shown that the stresses are localized and concentrated near the point where the thickness of the gasket is maximal, and the character of a possible fracture is discussed. It is found that there are multiple zones of wave stopping in an elastic periodic layer and the eigenfrequencies at which elastic modes are trapped are condensed at a local perturbation of the waveguide shape.
@article{ZVMMF_2015_55_10_a9,
     author = {S. A. Nazarov},
     title = {Eigenmodes of a thin elastic layer between periodic rigid profiles},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1713--1726},
     year = {2015},
     volume = {55},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Eigenmodes of a thin elastic layer between periodic rigid profiles
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1713
EP  - 1726
VL  - 55
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a9/
LA  - ru
ID  - ZVMMF_2015_55_10_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Eigenmodes of a thin elastic layer between periodic rigid profiles
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1713-1726
%V 55
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a9/
%G ru
%F ZVMMF_2015_55_10_a9
S. A. Nazarov. Eigenmodes of a thin elastic layer between periodic rigid profiles. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1713-1726. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a9/

[1] Nazarov S. A., “Uprugie volny, zakhvachennye odnorodnym anizotropnym polutsilindrom”, Matem. sbornik, 204:11 (2013), 99–130 | DOI | MR | Zbl

[2] Kamotskii I. V., Nazarov S. A., “O sobstvennykh funktsiyakh, lokalizovannykh okolo kromki tonkoi oblasti”, Problemy matem. analiza, 19, Nauchn. kniga, Novosibirsk, 1999, 105–148 | MR

[3] Freitas P., “Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and rhombi”, J. Functional Analysis, 251 (2007), 376–398 | DOI | MR | Zbl

[4] Friedlander L., Solomyak M., “On the spectrum of the Dirichlet Laplacian in a narrow strip”, Israel J. Math., 170 (2009), 337–354 | DOI | MR | Zbl

[5] Borisov D., Freitas P., “Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains”, Annales de l'institut Henri Poincare (C) Analyse non-lineaire, 26:2 (2009), 547–560 | DOI | MR | Zbl

[6] Borisov D., Freitas P., “Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in $\mathbb{R}^d$”, J. Functional Analysis, 258:3 (2010), 893–912 | DOI | MR | Zbl

[7] Nazarov S. A., “Spektralnye svoistva tonkogo sloya s dvoyakoperiodicheskim semeistvom istonchenii”, Teor. i matem. fiz., 174:3 (2013), 398–415 | DOI | Zbl

[8] Nazarov S. A., “Okolovershinnaya lokalizatsiya sobstvennykh funktsii zadachi Dirikhle v tonkikh mnogogrannikakh”, Sibirsk. matem. zh., 54:3 (2013), 655–672 | MR | Zbl

[9] Nazarov S. A., Perez M.-E., Taskinen J., Localization effect for Dirichlet eigenfunctions in thin non-smooth domains, Transactions of AMS, 2015

[10] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. Elektrodinamika sploshnykh sred, Nauka, M., 1982

[11] Berezin F. A., Shubin M. A., Uravnenie Shredingera, izd-vo MGU, M., 1983

[12] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[13] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[14] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980

[15] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for soluitons of elliptic partial differential equations satisfying general boundary conditions, 2”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl

[16] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | MR | Zbl

[17] Nazarov S. A., “Ob asimptotike spektra zadachi teorii uprugosti dlya tonkoi plastiny”, Sibirsk. matem. zh., 41:4 (2000), 895–912 | MR | Zbl

[18] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002

[19] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi matem. nauk, 37:4 (1982), 3–52

[20] Skriganov M. M., “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. matem. in-ta im. V. A. Steklova AN SSSR, 171, Nauka, L., 1985

[21] Yoshitomi K., “Band gap of the spectrum in periodically curved quantum waveguides”, J. Differential Equations, 142:1 (1998), 123–166 | DOI | MR | Zbl

[22] Friedlander L., Solomyak M., “On the spectrum of narrow periodic waveguides”, Russ. J. Math. Phys., 15:2 (2008), 238–242 | DOI | MR | Zbl

[23] Nazarov S. A., “Primer mnozhestvennosti lakun v spektre periodicheskogo volnovoda”, Matem. sbornik, 201:4 (2010), 99–124 | DOI | MR | Zbl

[24] Nazarov S. A., Ruotsalainen K., Taskinen J., “Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps”, Applicable Anal., 89:1 (2010), 109–124 | DOI | MR | Zbl

[25] Nazarov S. A., “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sibirsk. matem. zh., 51:5 (2010), 1086–1101 | MR | Zbl

[26] Nazarov S. A., “Lakuny i sobstvennye chastoty v spektre periodicheskogo akusticheskogo volnovoda”, Akusticheskii zh., 59:3 (2013), 312–321 | DOI

[27] Nazarov S. A., “Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness”, C.R. Mecanique, 330 (2002), 603–607 | DOI | Zbl

[28] Babich V. M. Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972