On uniform approximations to the solution of the Abel integral equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1703-1712 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Abel integral equation with a continuous solution and approximately defined right-hand side, a method of regularization without restrictions on the parameter of this equation is proposed.
@article{ZVMMF_2015_55_10_a8,
     author = {G. V. Khromova},
     title = {On uniform approximations to the solution of the {Abel} integral equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1703--1712},
     year = {2015},
     volume = {55},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a8/}
}
TY  - JOUR
AU  - G. V. Khromova
TI  - On uniform approximations to the solution of the Abel integral equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1703
EP  - 1712
VL  - 55
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a8/
LA  - ru
ID  - ZVMMF_2015_55_10_a8
ER  - 
%0 Journal Article
%A G. V. Khromova
%T On uniform approximations to the solution of the Abel integral equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1703-1712
%V 55
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a8/
%G ru
%F ZVMMF_2015_55_10_a8
G. V. Khromova. On uniform approximations to the solution of the Abel integral equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1703-1712. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a8/

[1] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[2] Khromova G. V., “Ob odnom sposobe postroeniya metodov regulyarizatsii uravnenii I roda”, Zh. vychisl. matem. i matem. fiz., 40:7 (2000), 997–1002 | MR | Zbl

[3] Khromova G. V., “O priblizhennykh resheniyakh uravneniya Abelya”, Vestn. Mosk. un-ta. Ser. 15, 2001, no. 3, 5–9

[4] Khromova G. V., “Regulyarizatsiya uravneniya Abelya s pomoschyu razryvnogo operatora Steklova”, Izv. Sarat. un-ta. Novaya seriya. Ser. Matematika. Mekhanika. Informatika, 14:4/2 (2014), 597–601

[5] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1963, 96

[6] Ivanov V. K., “Ob integralnykh uravneniyakh Fredgolma pervogo roda”, Differents. ur-niya, 3:3 (1967), 410–421 | MR | Zbl