Sufficient optimality conditions for a class of nonconvex control problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1670-1680 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The optimization of a bilinear-quadratic functional with respect to a linear phase system with a modulus control constraint is considered. Special representations of the cost functional are used to obtain sufficient optimality conditions for certain classes of extremal controls in the form of sign definiteness inequalities for functions of one and two variables. These conditions are as easy to implement numerically as verifying controls for extremeness.
@article{ZVMMF_2015_55_10_a5,
     author = {E. V. Aksenyushkina and V. A. Srochko},
     title = {Sufficient optimality conditions for a class of nonconvex control problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1670--1680},
     year = {2015},
     volume = {55},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a5/}
}
TY  - JOUR
AU  - E. V. Aksenyushkina
AU  - V. A. Srochko
TI  - Sufficient optimality conditions for a class of nonconvex control problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1670
EP  - 1680
VL  - 55
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a5/
LA  - ru
ID  - ZVMMF_2015_55_10_a5
ER  - 
%0 Journal Article
%A E. V. Aksenyushkina
%A V. A. Srochko
%T Sufficient optimality conditions for a class of nonconvex control problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1670-1680
%V 55
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a5/
%G ru
%F ZVMMF_2015_55_10_a5
E. V. Aksenyushkina; V. A. Srochko. Sufficient optimality conditions for a class of nonconvex control problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1670-1680. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a5/

[1] Mangasarian O. L., “Sufficient conditions for the optimal control of nonlinear systems”, SIAM J. Control Optim., 1966, no. 4, 139–152 | DOI | MR | Zbl

[2] Krotov V. F., Gurman V. I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973 | MR

[3] Antipina N. V., Dykhta V. A., “Lineinye funktsii Lyapunova–Krotova i dostatochnye usloviya optimalnosti v forme printsipa maksimuma”, Izv. vyssh. uchebn. zavedenii. Matematika, 2002, no. 12, 11–22

[4] Nikolskii M. S., “O dostatochnosti printsipa maksimuma Pontryagina v nekotorykh optimizatsionnykh zadachakh”, Vestnik Mosk. un-ta. Ser. 15. Vychisl. matem. i kibern., 2005, no. 1, 35–43

[5] Srochko V. A., Antonik V. G., “Dostatochnye usloviya optimalnosti ekstremalnykh upravlenii na osnove formul prirascheniya funktsionala”, Izv. vyssh. uchebn. zavedenii. Matematika, 2014, no. 8, 96–102

[6] Strekalovskii A. S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[7] Strekalovskii A. S., Sharankhaeva E. V., “Globalnyi poisk v nevypukloi zadache optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 45:10 (2005), 1785–1800 | MR | Zbl

[8] Antonik V. G., Srochko V. A., “Metod nelokalnogo uluchsheniya ekstremalnykh upravlenii v zadache na maksimum normy konechnogo sostoyaniya”, Zh. vychisl. matem. i matem. fiz., 49:5 (2009), 791–804 | MR | Zbl

[9] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vyssh. uchebn. zavedenii. Matematika, 2009, no. 1, 3–43