The Dines theorem and some other properties of quadratic mappings
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1661-1669 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Real homogeneous quadratic mappings from $\mathbb{R}^n$ to $\mathbb{R}^2$ are examined. It is known that the image of such a mapping is always convex. A proof of the convexity of the image based on the quadratic extremum principle is given. The following fact is noted: If the quadratic mapping $Q$ is surjective and $n>2+\mathrm{dim\,ker\,}Q$, then there exists a regular zero of $Q$. A certain criterion of the linear dependence of quadratic forms is also stated.
@article{ZVMMF_2015_55_10_a4,
     author = {D. Yu. Karamzin},
     title = {The {Dines} theorem and some other properties of quadratic mappings},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1661--1669},
     year = {2015},
     volume = {55},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a4/}
}
TY  - JOUR
AU  - D. Yu. Karamzin
TI  - The Dines theorem and some other properties of quadratic mappings
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1661
EP  - 1669
VL  - 55
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a4/
LA  - ru
ID  - ZVMMF_2015_55_10_a4
ER  - 
%0 Journal Article
%A D. Yu. Karamzin
%T The Dines theorem and some other properties of quadratic mappings
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1661-1669
%V 55
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a4/
%G ru
%F ZVMMF_2015_55_10_a4
D. Yu. Karamzin. The Dines theorem and some other properties of quadratic mappings. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1661-1669. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a4/

[1] Dines L. L., “On the mapping of quadratic forms”, Bull. Amer. Math. Soc., 37 (1941), 494–498 | DOI | MR

[2] Arutyunov A. V., Yachimovich V., “K teorii ekstremuma dlya anormalnykh zadach”, Vestn. MGU. Ser. Vychisl. matem. i kibernetika, 2000, no. 1, 34–40 | MR

[3] Vasilev F. P., Metody optimizatsii, Faktorial press, M., 2002

[4] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[5] Polyak B. T., “Lokalnoe programmirovanie”, Zh. vychisl. matem. i matem. fiz., 41:9 (2001), 1324–1331 | MR | Zbl

[6] Polyak V. T., “Convexity of quadratic transformations and its use in control and optimization”, J. Optimizat. Theor. and Appl., 99:3 (1998), 553–583 | DOI | MR | Zbl

[7] Matveev A. S., Yakubovich V. A., “Nevypuklye zadachi globalnoi optimizatsii v teorii upravleniya”, Itogi nauki i tekhn. Sovrem. matem. i ee prilozheniya, 60, VINITI, M., 1998, 128–175 | MR | Zbl

[8] Hiriart-Urruty J.-V., Torki M., “Permanently going back and forth between the “quadratic world” and the “convexity world” in optimization”, J. Appl. Math. Optimizat., 45:2 (2002), 169–184 | DOI | MR | Zbl

[9] Finsler P., “Uber das vorkommen deflniter und semidenniter formen in scharen quadratischer formen”, Comment. Math. Helv., 1936, no. 9, 188–192 | DOI | MR

[10] Brickman L., “On the fields of values of a matrix”, Proc. Amer. Math. Soc., 1961, no. 12, 61–66 | DOI | MR | Zbl

[11] Avakov E. R., “Usloviya ekstremuma dlya gladkikh zadach s ogranicheniyami tipa ravenstv”, Zh. vychisl. matem. i matem. fiz., 25:5 (1985), 680–693 | MR | Zbl

[12] Agrachev A. A., Gamkrelidze R. V., “Kvadratichnye otobrazheniya i gladkie vektor-funktsii: eilerovy kharakteristiki mnozhestv urovnya”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 3, VINITI, M., 1989, 179–239 | MR

[13] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | MR | Zbl

[14] Agrachev A. A., Sarychev A. V., “Abnormal sub-Riemannian geodesies: Morse index and rigidity”, Ann. Inst. Henri Poincare, 13:6 (1996), 635–690 | MR | Zbl

[15] Matveev A., “Lagrange duality in nonconvex optimization theory and modifications of the Toeplitz–Hausdorff theorem”, St.-Petersburg Math. J., 7 (1996), 787–815 | MR

[16] Arutyunov A. V., “Nekotorye svoistva kvadratichnykh otobrazhenii”, Vestn. MGU. Ser. 15. VMiK, 1999, no. 2, 30–32 | MR

[17] Barvinok A. I., On convex properties of the quadratic image of the sphere, Technical report, University of Michigan, 1999 | Zbl

[18] Izmailov A. F., Solodov M. V., “Newton-type methods for optimization problems without constraint qualifications”, SIAM J. Optimizat., 15:1 (2004), 210–228 | DOI | MR | Zbl

[19] Golishnikov M. M., Izmailov A. F., “Nyutonovskie metody dlya zadach uslovnoi optimizatsii s neregulyarnymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1369–1391 | MR

[20] Arutyunov A. V., Zhukovskii S. E., “Suschestvovanie obratnykh otobrazhenii i ikh svoistva”, Trudy MIAN, 271, 2010, 1–11

[21] Arutyunov A. V., “Dve zadachi teorii kvadratichnykh otobrazhenii”, Funkts. analiz i ego prilozhenie, 46:3 (2012), 81–84 | DOI | MR | Zbl

[22] Arutyunov A. V., “Gladkie anormalnye zadachi teorii ekstremuma i analiza”, Uspekhi Matem. Nauk, 67:3(405) (2012), 3–62 | DOI | MR

[23] Arutyunov A. V., Zhukovskii S. E., Mingaleeva Z. T., “Differentsialnye svoistva funktsii minimuma dlya diagonaliziruemykh kvadratichnykh zadach”, Zh. vychisl. matem. i matem. fiz., 52:10 (2012), 1768–1777 | Zbl

[24] Izmailov A. F., Solodov M. V., “Stabilized SQP revisited”, Math. Program, 122:1 (2012), 93–120 | DOI | MR

[25] Bochnak J., Coste M., Roy M. F., Real algebraic geometry, Series of Modern Surveys in Math., Springer, New York, 1988 | MR

[26] Arutyunov A. V., Karamzin D. Yu., “Regulyarnye nuli kvadratichnykh otobrazhenii i ikh prilozhenie”, Matem. sb., 202:6 (2011), 3–28 | DOI

[27] Arutyunov A. V., “Neotritsatelnost kvadratichnykh form na peresechenii kvadrik i kvadratichnye otobrazheniya”, Matem. zametki, 84:2 (2008), 163–174 | DOI | MR | Zbl

[28] Avakov E. R., Arutyunov A. V., Karamzin D. Yu., “Issledovanie gladkikh otobrazhenii v okrestnosti anormalnoi tochki”, Izvestiya RAN, ser. matem., 78:2 (2014), 3–44 | DOI | Zbl