@article{ZVMMF_2015_55_10_a4,
author = {D. Yu. Karamzin},
title = {The {Dines} theorem and some other properties of quadratic mappings},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1661--1669},
year = {2015},
volume = {55},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a4/}
}
TY - JOUR AU - D. Yu. Karamzin TI - The Dines theorem and some other properties of quadratic mappings JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1661 EP - 1669 VL - 55 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a4/ LA - ru ID - ZVMMF_2015_55_10_a4 ER -
D. Yu. Karamzin. The Dines theorem and some other properties of quadratic mappings. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1661-1669. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a4/
[1] Dines L. L., “On the mapping of quadratic forms”, Bull. Amer. Math. Soc., 37 (1941), 494–498 | DOI | MR
[2] Arutyunov A. V., Yachimovich V., “K teorii ekstremuma dlya anormalnykh zadach”, Vestn. MGU. Ser. Vychisl. matem. i kibernetika, 2000, no. 1, 34–40 | MR
[3] Vasilev F. P., Metody optimizatsii, Faktorial press, M., 2002
[4] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR
[5] Polyak B. T., “Lokalnoe programmirovanie”, Zh. vychisl. matem. i matem. fiz., 41:9 (2001), 1324–1331 | MR | Zbl
[6] Polyak V. T., “Convexity of quadratic transformations and its use in control and optimization”, J. Optimizat. Theor. and Appl., 99:3 (1998), 553–583 | DOI | MR | Zbl
[7] Matveev A. S., Yakubovich V. A., “Nevypuklye zadachi globalnoi optimizatsii v teorii upravleniya”, Itogi nauki i tekhn. Sovrem. matem. i ee prilozheniya, 60, VINITI, M., 1998, 128–175 | MR | Zbl
[8] Hiriart-Urruty J.-V., Torki M., “Permanently going back and forth between the “quadratic world” and the “convexity world” in optimization”, J. Appl. Math. Optimizat., 45:2 (2002), 169–184 | DOI | MR | Zbl
[9] Finsler P., “Uber das vorkommen deflniter und semidenniter formen in scharen quadratischer formen”, Comment. Math. Helv., 1936, no. 9, 188–192 | DOI | MR
[10] Brickman L., “On the fields of values of a matrix”, Proc. Amer. Math. Soc., 1961, no. 12, 61–66 | DOI | MR | Zbl
[11] Avakov E. R., “Usloviya ekstremuma dlya gladkikh zadach s ogranicheniyami tipa ravenstv”, Zh. vychisl. matem. i matem. fiz., 25:5 (1985), 680–693 | MR | Zbl
[12] Agrachev A. A., Gamkrelidze R. V., “Kvadratichnye otobrazheniya i gladkie vektor-funktsii: eilerovy kharakteristiki mnozhestv urovnya”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 3, VINITI, M., 1989, 179–239 | MR
[13] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | MR | Zbl
[14] Agrachev A. A., Sarychev A. V., “Abnormal sub-Riemannian geodesies: Morse index and rigidity”, Ann. Inst. Henri Poincare, 13:6 (1996), 635–690 | MR | Zbl
[15] Matveev A., “Lagrange duality in nonconvex optimization theory and modifications of the Toeplitz–Hausdorff theorem”, St.-Petersburg Math. J., 7 (1996), 787–815 | MR
[16] Arutyunov A. V., “Nekotorye svoistva kvadratichnykh otobrazhenii”, Vestn. MGU. Ser. 15. VMiK, 1999, no. 2, 30–32 | MR
[17] Barvinok A. I., On convex properties of the quadratic image of the sphere, Technical report, University of Michigan, 1999 | Zbl
[18] Izmailov A. F., Solodov M. V., “Newton-type methods for optimization problems without constraint qualifications”, SIAM J. Optimizat., 15:1 (2004), 210–228 | DOI | MR | Zbl
[19] Golishnikov M. M., Izmailov A. F., “Nyutonovskie metody dlya zadach uslovnoi optimizatsii s neregulyarnymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1369–1391 | MR
[20] Arutyunov A. V., Zhukovskii S. E., “Suschestvovanie obratnykh otobrazhenii i ikh svoistva”, Trudy MIAN, 271, 2010, 1–11
[21] Arutyunov A. V., “Dve zadachi teorii kvadratichnykh otobrazhenii”, Funkts. analiz i ego prilozhenie, 46:3 (2012), 81–84 | DOI | MR | Zbl
[22] Arutyunov A. V., “Gladkie anormalnye zadachi teorii ekstremuma i analiza”, Uspekhi Matem. Nauk, 67:3(405) (2012), 3–62 | DOI | MR
[23] Arutyunov A. V., Zhukovskii S. E., Mingaleeva Z. T., “Differentsialnye svoistva funktsii minimuma dlya diagonaliziruemykh kvadratichnykh zadach”, Zh. vychisl. matem. i matem. fiz., 52:10 (2012), 1768–1777 | Zbl
[24] Izmailov A. F., Solodov M. V., “Stabilized SQP revisited”, Math. Program, 122:1 (2012), 93–120 | DOI | MR
[25] Bochnak J., Coste M., Roy M. F., Real algebraic geometry, Series of Modern Surveys in Math., Springer, New York, 1988 | MR
[26] Arutyunov A. V., Karamzin D. Yu., “Regulyarnye nuli kvadratichnykh otobrazhenii i ikh prilozhenie”, Matem. sb., 202:6 (2011), 3–28 | DOI
[27] Arutyunov A. V., “Neotritsatelnost kvadratichnykh form na peresechenii kvadrik i kvadratichnye otobrazheniya”, Matem. zametki, 84:2 (2008), 163–174 | DOI | MR | Zbl
[28] Avakov E. R., Arutyunov A. V., Karamzin D. Yu., “Issledovanie gladkikh otobrazhenii v okrestnosti anormalnoi tochki”, Izvestiya RAN, ser. matem., 78:2 (2014), 3–44 | DOI | Zbl