The Dines theorem and some other properties of quadratic mappings
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1661-1669

Voir la notice de l'article provenant de la source Math-Net.Ru

Real homogeneous quadratic mappings from $\mathbb{R}^n$ to $\mathbb{R}^2$ are examined. It is known that the image of such a mapping is always convex. A proof of the convexity of the image based on the quadratic extremum principle is given. The following fact is noted: If the quadratic mapping $Q$ is surjective and $n>2+\mathrm{dim\,ker\,}Q$, then there exists a regular zero of $Q$. A certain criterion of the linear dependence of quadratic forms is also stated.
@article{ZVMMF_2015_55_10_a4,
     author = {D. Yu. Karamzin},
     title = {The {Dines} theorem and some other properties of quadratic mappings},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1661--1669},
     publisher = {mathdoc},
     volume = {55},
     number = {10},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a4/}
}
TY  - JOUR
AU  - D. Yu. Karamzin
TI  - The Dines theorem and some other properties of quadratic mappings
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1661
EP  - 1669
VL  - 55
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a4/
LA  - ru
ID  - ZVMMF_2015_55_10_a4
ER  - 
%0 Journal Article
%A D. Yu. Karamzin
%T The Dines theorem and some other properties of quadratic mappings
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1661-1669
%V 55
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a4/
%G ru
%F ZVMMF_2015_55_10_a4
D. Yu. Karamzin. The Dines theorem and some other properties of quadratic mappings. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1661-1669. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a4/