@article{ZVMMF_2015_55_10_a3,
author = {G. K. Kamenev},
title = {Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1647--1660},
year = {2015},
volume = {55},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a3/}
}
TY - JOUR AU - G. K. Kamenev TI - Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1647 EP - 1660 VL - 55 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a3/ LA - ru ID - ZVMMF_2015_55_10_a3 ER -
%0 Journal Article %A G. K. Kamenev %T Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1647-1660 %V 55 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a3/ %G ru %F ZVMMF_2015_55_10_a3
G. K. Kamenev. Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1647-1660. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a3/
[1] Gruber P. M., “Aspects of approximation of convex bodies”, Handbook of Convex Geometry, Ch. 1.10, eds. P. M. Gruber, J. M. Wills, Elsevier Sci. Publishers B. V., 1993, 321–345 | MR
[2] Bronshtein E. M., “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Geometriya, SMFN, 22, RUDN, M., 2007, 5–37 | Zbl
[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969
[4] Lotov A. V., “O ponyatii obobschennykh mnozhestv dostizhimosti i ikh postroenii dlya lineinykh upravlyaemykh sistem”, Dokl. AN SSSR, 250:5 (1980), 1081–1083 | MR | Zbl
[5] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[6] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Appl. Optimization, 89, Kluwer, New York, 2004, 310 pp. | DOI | MR | Zbl
[7] Bushenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 1982
[8] Kamenev G. K., Issledovanie iteratsionnykh metodov approksimatsii vypuklykh mnozhestv mnogogrannikami, VTs AN SSSR, M., 1986
[9] Kamenev G. K., “Issledovanie odnogo algoritma approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 608–616 | MR | Zbl
[10] Kamenev G. K., “Effektivnye algoritmy approksimatsii negladkikh vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 423–427 | MR | Zbl
[11] Efpemov R. V., Kamenev G. K., “Apriornaya otsenka asimptoticheskoi effektivnosti odnogo klassa algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 23–32 | MR
[12] Kamenev G. K., “Skorost skhodimosti adaptivnykh metodov poliedralnoi approksimatsii vypuklykh tel na nachalnom etape”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 35–50
[13] Efremov R. V., Kamenev G. K., “Ob optimalnom poryadke rosta chisla vershin i gipergranei v klasse khausdorfovykh metodov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1018–1031 | MR | Zbl
[14] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, Izd. VTs RAN, M., 2007, 230 pp.
[15] Dzholdybaeva S. M., Kamenev G. K., “Chislennoe issledovanie effektivnosti algoritma approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 857–866 | MR | Zbl
[16] Kamenev G. K., Chislennoe issledovanie effektivnosti metodov poliedralnoi approksimatsii vypuklykh tel, Izd. VTs RAN, M., 2010, 118 pp.
[17] Böröczky K. (Jr.), “Polytopal Approximation Bounding the Number of $k$-Faces”, J. of Approx. Theory, 102 (2000), 263–285 | DOI | MR | Zbl
[18] Böröczky K. (Jr.), Fodor F., Vígh V., “Approximating 3-dimensional convex bodies by polytopes with a restricted number of edges”, Beit. Alg. Geom., 49 (2008), 177–193 | MR | Zbl
[19] Kamenev G. K., “Approksimatsiya vpolne ogranichennykh mnozhestv metodom glubokikh yam”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1751–1760 | MR | Zbl
[20] Kamenev G. K., Lotov A. V., Maiskaya T. S., “Postroenie suboptimalnykh pokrytii mnogomernoi edinichnoi sfery”, Dokl. AN, 444:2 (2012), 153–155 | Zbl
[21] Kamenev G. K., Lotov A. V., Maiskaya T. S., “Iterativnyi metod postroeniya pokrytii mnogomernoi edinichnoi sfery”, Zh. vychisl. matem. i matem. fiz., 53:2 (2013), 181–194 | DOI | MR | Zbl
[22] Kamenev G. K., “Poliedralnaya approksimatsiya shara Metodom Glubokikh Yam s optimalnym poryadkom rosta moschnosti grannoi struktury”, Chislennaya geometriya, postroenie raschetnykh setok i vysokoproizvoditelnye vychisleniya, NUMGRID2010, Trudy Mezhdunar. konf. (Moskva, 11–13 oktyabrya 2010 g.), Izd. Folium, M., 2010, 47–52 | MR
[23] Kamenev G. K., “Metod poliedralnoi approksimatsii shara s optimalnym poryadkom rosta moschnosti grannoi struktury”, Zh. vychisl. matem. i matem. fiz., 54:8 (2014), 1235–1248 | DOI | Zbl
[24] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968
[25] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v. 1, Mir, M., 1990
[26] Grünbaum B., Convex polytopes, Graduate texts in mathematics, 221, Second Edition, Springer, Berlin, 2003 | DOI | MR
[27] Kamenev G. K., “Ob odnom klasse adaptivnykh skhem approksimatsii vypuklykh tel mnogogrannikami”, Matem. modelirovanie i diskretnaya optimizatsiya, VTs AN SSSR, M., 1988, 3–9
[28] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR
[29] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985
[30] McMullen P., “The maximum numbers of faces of convex polytope”, Mathematica, 17 (1970), 179–184 | MR | Zbl
[31] Brensted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988
[32] Seidel R., “The upper bound theorem for polytopes: an easy proof of its asymptotic version”, Comput. Geometry: Theory and Applications, 5 (1995), 115–116 | DOI | MR | Zbl