Computation of shock waves in plasma
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1783-1800 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A multitemperature code intended for the numerical solution of the multicomponent gas dynamics equations in problems with a high energy density in matter is described. The velocities of all components with nonzero masses are assumed to be identical. Together with transport of gases with a tabulated equation of state, the code can include electron heat conduction, radiative transfer, energy exchange between the components, and chemical reactions. The gasdynamic part is based on Godunov's scheme and an efficient Riemann solver with an approximate local equation of state.
@article{ZVMMF_2015_55_10_a15,
     author = {A. G. Aksenov},
     title = {Computation of shock waves in plasma},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1783--1800},
     year = {2015},
     volume = {55},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a15/}
}
TY  - JOUR
AU  - A. G. Aksenov
TI  - Computation of shock waves in plasma
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1783
EP  - 1800
VL  - 55
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a15/
LA  - ru
ID  - ZVMMF_2015_55_10_a15
ER  - 
%0 Journal Article
%A A. G. Aksenov
%T Computation of shock waves in plasma
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1783-1800
%V 55
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a15/
%G ru
%F ZVMMF_2015_55_10_a15
A. G. Aksenov. Computation of shock waves in plasma. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1783-1800. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a15/

[1] Godunov S. K., “Raznostnyi metod rascheta udarnykh voln”, Uspekhi matem. nauk, 12:1 (1957), 176–177 | MR | Zbl

[2] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sbornik, 47:3 (1959), 271–306 | MR | Zbl

[3] Colella P., Woodward P. R., “The piecewise parabolic method (ppm) for gas-dynamical simulations”, J. Somr. Phys., 54 (1984), 174–201 | MR | Zbl

[4] Roe P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes”, J. Somrut. Phys., 135 (1997), 250–258 | MR | Zbl

[5] Colella P., Glaz H. M., “Efficient solution algorithms for the Riemann problem for real gases”, J. Somrut. Phys., 59 (1985), 264–289 | MR | Zbl

[6] Basko M. M., Churazov M. D., Aksenov A. G., “Prospects of heavy ion fussion in cylindrical geometry”, Laser Part. Beams, 20 (2003), 411–414

[7] Anisimov S. I. et al., “Ablated matter expansion and crater formation under the action of ultrashort laser pulse”, J. of Exp. and Theor. Phys., 103:2 (2006), 183–197 | DOI | MR

[8] Fortov V. E., Hoffmann D. H. H., Sharkov B. Yu., “Reviews of topical problems: intense ion beams for generating extreme states of matter”, Phys. Uspekhi, 51:2 (2008), 109–131 | DOI

[9] Bruenn S. W., “Stellar core collapse: numerical model and infall epoch”, ApJ Supp., 58 (1985), 771–841 | DOI

[10] Pelanti M., Shyue K.-M., “A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves”, J. Somput. Phys., 259 (2014), 331–357 | MR

[11] Zhukov V. T., Zabrodin A. V., Feodoritova O. B., “Metod resheniya dvumernykh uravnenii dinamiki teploprovodnogo gaza v oblastyakh slozhnoi formy”, Zh. vychisl. matem. i matem. fiz., 33:8 (1993), 1240–1250 | MR | Zbl

[12] Miller G. H., Puckett E. G., “A high-order Godunov method for multiple condensed phases”, J. Somput. Phys., 128 (1996), 134–164 | Zbl

[13] Churazov M. D., Aksenov A. G., Zabrodina E. A., “Vosplamenenie termoyadernykh mishenei puchkom tyazhelykh ionov”, Vopr. atomn. nauki i tekhniki. Ser. Matematicheskoe modelirovanie, 2001, no. 1, 20–28

[14] Aksenov A. G., Churazov M. D., “Ignition problems for advanced fuel”, Nuclear Instruments and Methods in Phys. Research A, 464 (2001), 180–184 | DOI

[15] Aksenov A. G., Churazov M. D., “Deuterium targets and the MDMT code”, Laser Part. Beams, 21 (2003), 81–84 | DOI

[16] Aksenov A. G. et al., “Cylindrical targets for heavy ions fussion”, Nuclear Instruments and Methods in Physics Research A, 544 (2005), 416–421 | DOI

[17] Aksenov A. G., Troshkin O. V., “MDMT hydrodynamical code and the laser ablation simulations”, Collection Phys. of Extreme States of Matter, eds. Fortov V. E. et al., Institute of Problems of Chem. Phys. RAS, Chernogolovka, 2010, 141–144

[18] Shafranov V. D., “Struktura udarnoi volny v plazme”, Zh. eksperim. i teor. fiz., 32 (1957), 1453–1459

[19] Basko M. M., “Stopping of fast ions in a dence plasma”, Sov. J. Plasma Phys., 10:6 (1984), 689–694

[20] Hall G., Watt J. M., Modern Numerical Methods for Ordinary Differential Equations, Clarendon Press, Oxford, 1976 | MR | Zbl