Numerical study of a quasi-hydrodynamic system of equations for flow computation at small mach numbers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1773-1782 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The applicability of numerical algorithms based on a quasi-hydrodynamic system of equations for computing viscous heat-conducting compressible gas flows at Mach numbers $\mathrm{M}=10^{-2}$$10^{-1}$ is studied numerically. The numerical algorithm is briefly described, and the results obtained for a number of two- and three-dimensional test problems are presented and compared with earlier numerical data.
@article{ZVMMF_2015_55_10_a14,
     author = {V. A. Balashov and E. B. Savenkov},
     title = {Numerical study of a quasi-hydrodynamic system of equations for flow computation at small mach numbers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1773--1782},
     year = {2015},
     volume = {55},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a14/}
}
TY  - JOUR
AU  - V. A. Balashov
AU  - E. B. Savenkov
TI  - Numerical study of a quasi-hydrodynamic system of equations for flow computation at small mach numbers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1773
EP  - 1782
VL  - 55
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a14/
LA  - ru
ID  - ZVMMF_2015_55_10_a14
ER  - 
%0 Journal Article
%A V. A. Balashov
%A E. B. Savenkov
%T Numerical study of a quasi-hydrodynamic system of equations for flow computation at small mach numbers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1773-1782
%V 55
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a14/
%G ru
%F ZVMMF_2015_55_10_a14
V. A. Balashov; E. B. Savenkov. Numerical study of a quasi-hydrodynamic system of equations for flow computation at small mach numbers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1773-1782. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a14/

[1] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004

[2] Elizarova T. G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007

[3] Sheretov Yu. V., Dinamika sploshnykh sred pri prostranstvenno-vremennóm osrednenii, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2009

[4] Elizarova T. G., “Osrednenie po vremeni kak priblizhennyi sposob postroeniya kvazigazodinamicheskikh i kvazigidrodinamicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 2096–2105 | MR | Zbl

[5] Bulatov O. V., Elizarova T. G., “Regulyarizovannye uravneniya melkoi vody i effektivnyi metod chislennogo modelirovaniya techenii v neglubokikh vodoemakh”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 170–184 | MR | Zbl

[6] Elizarova T. G., Afanaseva M. V., “Regulyarizovannye uravneniya melkoi vody”, Vestn. Moskovskogo un-ta, seriya 3. Fizika. Astronomiya, 2010, no. 1, 15–18

[7] Popov M. V., Elizarova T. G., “Modelirovanie trekhmernykh MGD-techenii v ramkakh magnitnoi kvazigazodinamiki”, Preprinty IPM im. M. V. Keldysha, 2013, 023, 32 pp.

[8] Elizarova T. G., Ustyugov S. D., “Kvazigazodinamicheskii algoritm resheniya uravnenii magnitnoi gidrodinamiki. Odnomernyi sluchai”, Preprinty IPM im. M. V. Keldysha, 2011, 001, 20 pp.

[9] Shirokov I. A., Elizarova T. G., “Simulation of laminar-turbulent transition in compressible Taylor–Green flow basing on quasi-gas dynamic equations”, J. Turbulence, 15:10 (2014), 707–730 | DOI | MR

[10] Sheretov Yu. V., “O svoistvakh reshenii kvazigidrodinamicheskikh uravnenii v barotropnom priblizhenii”, Vestnik Tverskogo gos. un-ta. Seriya “Prikladnaya matematika”, 2009, no. 3, 5–19

[11] Sheretov Yu. V., “Ob obschikh tochnykh resheniyakh sistem Eilera, Nave–Stoksa i kvazigidrodinamicheskoi sistemy dlya ploskikh ustanovivshikhsya techenii”, Vestn. Tverskogo gos. un-ta. Seriya “Prikladnaya matematika”, 2013, no. 2, 29–36

[12] Zlotnik A. A., “O parabolichnosti kvazigidrodinamicheskoi sistemy uravnenii i ustoichivosti malykh vozmuschenii dlya nee”, Matem. zametki, 83:5 (2008), 667–682 | DOI | MR | Zbl

[13] Zlotnik A. A., “Energeticheskie ravenstva i otsenki dlya barotropnykh kvazigazo? i kvazigidrodinamicheskikh sistem uravnenii”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 325–337 | MR | Zbl

[14] Elizarova T. G., Bulatov O. V., “Numerical simulation of gas flow on the basis of quasi-hydrodynamic equations”, Moscow University Physics Bulletin, 64:6 (2009), 589–593 | DOI | Zbl

[15] Breuer M., Bernsdorf J., Zeiser T., Durst F., “Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume”, Internat. J. Heat and Fluid Flow, 21:2 (2000), 186–196 | DOI

[16] Shapeev V. P., Vorozhtsov E. V., Isaev V. I., Idimeshev S. V., “Metod kollokatsii i naimenshikh nevyazok dlya trekhmernykh uravnenii Nave–Stoksa”, Vychisl. metody i programmirovanie, 14:3 (2013), 306–322

[17] Wong K. L., Baker A. J., “A 3D incompressible Navier–Stokes velocity-vorticity weak form finite element algorithm”, Internat. J. Numerical Methods in Fluids, 38:2 (2002), 99–123 | DOI | Zbl

[18] Silin D., Patzek T., “Predicting relative-permeability curves directly from rock images”, SPE Annual Technical Conference and Exhibition (4–7 October, 2009, New Orleans, Louisiana), SPE paper 124974