Rhie–Chow interpolation in strong centrifugal fields
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1756-1761 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Rhie–Chow interpolation formulas are derived from the Navier–Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as $10^6$ g) occurring in gas centrifuges.
@article{ZVMMF_2015_55_10_a12,
     author = {S. V. Bogovalov and I. V. Tronin},
     title = {Rhie{\textendash}Chow interpolation in strong centrifugal fields},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1756--1761},
     year = {2015},
     volume = {55},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a12/}
}
TY  - JOUR
AU  - S. V. Bogovalov
AU  - I. V. Tronin
TI  - Rhie–Chow interpolation in strong centrifugal fields
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1756
EP  - 1761
VL  - 55
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a12/
LA  - ru
ID  - ZVMMF_2015_55_10_a12
ER  - 
%0 Journal Article
%A S. V. Bogovalov
%A I. V. Tronin
%T Rhie–Chow interpolation in strong centrifugal fields
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1756-1761
%V 55
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a12/
%G ru
%F ZVMMF_2015_55_10_a12
S. V. Bogovalov; I. V. Tronin. Rhie–Chow interpolation in strong centrifugal fields. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1756-1761. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a12/

[1] Matsuda T., Sakurai T., Takeda N., “Source-sink flow in a gas centrifuge”, J. Fluid Mech., 69:1 (1975), 197–208 | DOI | Zbl

[2] Park J. K., Hyun J. M., “Numerical solutions for thermally driven compressible flows in a rapidly rotating cylinder”, Fluid Dynamics Research, 6 (1990), 139–153 | DOI

[3] Pradhan S., Kumaran V., “The generalized Onsager model for the secondary flow in a high-speed rotating cylinder”, J. Fluid Mech., 686 (2011), 109–159 | DOI | MR | Zbl

[4] Zhang W.-C., Jiang D.-J., Zeng S., Jishu Y. K., “Numerical simulation of influence of feed position on flow field”, Atoimic Energy Science and Technology, 48:2 (2014), 331–335

[5] Rhie C. M., Chow W. L., “A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation”, AIAA J., 21 (1983), 1525–1532 | DOI | Zbl

[6] Bogovalov S. V., Borisevich V. D., Borman V. D. et al., “Verification of numerical codes for modeling of the flow and isotope separation in gas centrifuges”, Computers Fluids, 86 (2013), 177–184 | DOI | MR | Zbl

[7] Abramov V. I., Bogovalov S. V., Borisevich V. D. i dr., “Verifikatsiya programmnykh sredstv dlya modelirovaniya nestatsionarnykh techenii v gazovoi tsentrifuge”, Zh. vychisl. matem. i matem. fiz., 53:6 (2013), 970–978 | DOI | Zbl

[8] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986 | MR