An iterative $\mathrm{KP}_1$ method for solving the transport equation in $\mathrm{3D}$ domains on unstructured grids
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1727-1740 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-step iterative $\mathrm{KP}_1$ method for solving systems of grid equations that approximate the integro-differential transport equation in $\mathrm{3D}$ domains on unstructured grids using nodal $\mathrm{S_N}$ methods is described. Results of testing the efficiency of the proposed method in solving benchmark problems of reactor protection on tetrahedral grids are presented.
@article{ZVMMF_2015_55_10_a10,
     author = {N. I. Kokonkov and O. V. Nikolaeva},
     title = {An iterative $\mathrm{KP}_1$ method for solving the transport equation in $\mathrm{3D}$ domains on unstructured grids},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1727--1740},
     year = {2015},
     volume = {55},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a10/}
}
TY  - JOUR
AU  - N. I. Kokonkov
AU  - O. V. Nikolaeva
TI  - An iterative $\mathrm{KP}_1$ method for solving the transport equation in $\mathrm{3D}$ domains on unstructured grids
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1727
EP  - 1740
VL  - 55
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a10/
LA  - ru
ID  - ZVMMF_2015_55_10_a10
ER  - 
%0 Journal Article
%A N. I. Kokonkov
%A O. V. Nikolaeva
%T An iterative $\mathrm{KP}_1$ method for solving the transport equation in $\mathrm{3D}$ domains on unstructured grids
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1727-1740
%V 55
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a10/
%G ru
%F ZVMMF_2015_55_10_a10
N. I. Kokonkov; O. V. Nikolaeva. An iterative $\mathrm{KP}_1$ method for solving the transport equation in $\mathrm{3D}$ domains on unstructured grids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 10, pp. 1727-1740. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_10_a10/

[1] Bell G. I., Glasstone S., Nuclear Reactor Theory, Van Nostrand Reinhold Co., New York, 1970

[2] Adams M. L., Larsen E. W., “Fast iterative methods for discrete-ordinates particle transport calculations”, Progress in Nuclear Energy, 40:1 (2002), 3–159 | DOI

[3] Goldin V. Ya., “Kvazidiffuznyi metod resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1078–1087 | MR

[4] Anistratov D. Y., Goldin V. Y., “Nonlinear methods for solving particle transport problems”, Transport Theory and Statistical Physics, 22:2–3 (1993), 125–163 | DOI | MR | Zbl

[5] Aristova E. N., Baidin D. F., “Ekonomichnost metodov kvazidiffuzii rascheta kriticheskikh parametrov bystrogo reaktora”, Matem. modelirovanie, 24:4 (2012), 129–136

[6] Aristova E. N., Baidin D. F., “Realizatsiya metoda kvazidiffuzii dlya rascheta kriticheskikh parametrov reaktora na bystrykh neitronakh v trekhmernoi geksagonalnoi geometrii”, Matem. modelirovanie, 24:8 (2012), 65–80

[7] Germogenova T. A., Sushkevich T. A., “Reshenie uravneniya perenosa metodom srednikh potokov”, Voprosy fiziki zaschity reaktorov, 3, Atomizdat, M., 1969, 34–46

[8] Voloschenko A. M., Germogenova T. A., “Numerical solution of the time-dependent transport equation with pulsed sources”, Transport Theory and Statistical Physics, 23:6 (1994), 845–869 | DOI | MR | Zbl

[9] Lebedev V. I., “Ob iteratsionnom KP-metode”, Zh. vychisl. matem. i matem. fiz., 7:6 (1967), 1250–1269 | MR | Zbl

[10] Voloschenko A. M., “$\mathrm{KP}_1$-skhema uskoreniya vnutrennikh iteratsii dlya uravneniya perenosa v trekhmernoi geometrii, soglasovannaya so vzveshennoi almaznoi skhemoi”, Zh. vychisl. matem. i matem. fiz., 49:2 (2009), 344–372 | MR | Zbl

[11] Kopp H. J., “Synthetic method solution of the transport equation”, Nuclear Science Engineering, 17:1 (1963), 65–74 | DOI

[12] Alcouffe R. E., “Diffusion synthetic acceleration methods for the diamond-differenced discrete-ordinates equations”, Nuclear Science and Engineering, 64:2 (1977), 344–355 | DOI

[13] Morel J. E., “Synthetic acceleration method for discrete ordinates calculations with highly anisotropic scattering”, Nuclear Science and Engineering, 82:1 (1982), 34–46 | MR

[14] Larsen E. W., “Unconditionally stable diffusion-synthetic acceleration methods for the slab geometry discrete ordinates equations. Part I: Theory”, Nuclear Science and Engineering, 82:1 (1982), 47–63 | DOI

[15] McCoy D. R., Larsen E. W., “Unconditionally stable diffusion-synthetic acceleration methods for the slab geometry discrete ordinates equations. Part II: Numerical results”, Nuclear Science and Engineering, 82:1 (1982), 64–70 | DOI | MR

[16] Larsen E. W., “Diffusion-synthetic acceleration methods for discrete-ordinates problems”, Transport Theory and Statistical Physics, 13:1–2 (1984), 107–126 | DOI | MR

[17] Khalil H., “A nodal diffusion technique for synthetic acceleration of nodal $\mathrm{S_N}$ calculations”, Nuclear Science and Engineering, 90:3 (1985), 263–280 | DOI

[18] Turcksin B., Ragusa J. C., “Discontinuous diffusion synthetic acceleration for transport on 2D arbitrary polygonal meshes”, J. Comput. Phys., 274 (2014), 356–369 | DOI

[19] Suslov I. R., “An algebraic collapsing acceleration method for acceleration of the inner (scattering) iterations in long characteristics transport theory”, Internat. Conference on Supercomputing in Nuclear Applications (Paris, France, September 22–24, 2003)

[20] Le Tellier R., Hébert A., “An improved algebraic collapsing acceleration with general boundary conditions for the characteristics method”, Nuclear Science and Engineering, 156:2 (2007), 121–138 | MR

[21] Nikolaeva O. V., “Nodalnaya setochnaya skhema dlya uravneniya perenosa izlucheniya na nestrukturirovannoi tetraedralnoi setke”, Matem. modelirovanie, 27:5 (2015), 80–96

[22] Kokonkov N. I., GMRES(m) algorithms implementation, http://cpt.imamod.ru/alg/krylov/cpt-2012_geminres.pdf

[23] Saad Y., Schultz M. H., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. on Scientific and Statistical Computing, 7:3 (1986), 856–869 | DOI | MR | Zbl

[24] Saad Y., “A flexible inner-outer preconditioned GMRES algorithm”, SIAM J. on Scientific Computing, 14:2 (1993), 461–469 | DOI | MR | Zbl

[25] Kavenoky A., Stepanek J., Schmidt F., Benchmark problems, Transport theory and advanced reactor calculations, IAEA-TECDOC-254, International Atomic Energy Agency, Vienna, 1981, 305–323 http://lib-store.iaea.org/Tecdocs/0254.pdf

[26] Kobayashi K., Sugimura N., Nagaya Y., “3D radiation transport benchmark problems and results for simple geometries with void region”, Progress in Nuclear Energy, 39:2 (2001), 119–144 | DOI

[27] Carlson B. G., Lee C. E., Mechanical quadrature and the transport equation, Los Alamos Scientific Laboratory Report, LAMS-2573, June, 1961