Domain decomposition method and numerical analysis of a fluid dynamics problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1515-1536
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-dimensional problem obtained by time discretization and linearization of a viscous flow governed by the incompressible Navier–Stokes equations is considered. The original domain is divided into subdomains such that their interface is a smooth (nonclosed, self-avoiding) curve with the ends belonging to the boundary of the domain. A nonconforming finite element method is constructed for the problem, and the convergence rate of the discrete solution of the problem to the exact one is estimated in the $L_2(\Omega_h)$ norm.
@article{ZVMMF_2014_54_9_a6,
     author = {A. V. Rukavishnikov},
     title = {Domain decomposition method and numerical analysis of a fluid dynamics problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1515--1536},
     year = {2014},
     volume = {54},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a6/}
}
TY  - JOUR
AU  - A. V. Rukavishnikov
TI  - Domain decomposition method and numerical analysis of a fluid dynamics problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1515
EP  - 1536
VL  - 54
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a6/
LA  - ru
ID  - ZVMMF_2014_54_9_a6
ER  - 
%0 Journal Article
%A A. V. Rukavishnikov
%T Domain decomposition method and numerical analysis of a fluid dynamics problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1515-1536
%V 54
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a6/
%G ru
%F ZVMMF_2014_54_9_a6
A. V. Rukavishnikov. Domain decomposition method and numerical analysis of a fluid dynamics problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1515-1536. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a6/

[1] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer-Verlag, N.Y., 1991

[2] Braess D., Dahmen W., Wieners C., “A multigrid algorithm for the mortar finite element methods”, SIAM J. Numer. Anal., 37:1 (1999), 48–69 | DOI

[3] Bernardi C., Maday Y., Patera A., “A New nonconforming approach to dornain decomposition: the mortar element method”, Nonlinear Partial Differential Equations and their Applications, Pitman, Paris, 1994, 13–51

[4] Wohlmuth B., “Hierarchical a posteriori error estimators for mortar finite element methods with Lagrange multipliers”, SIAM J. Numer. Anal., 36:5 (1999), 1636–1658 | DOI

[5] Flemisch B., Melenk J. M., Wohlmuth B., “Mortar methods with curved interfaces”, Appl. Numer. Math., 54 (2005), 339–361 | DOI

[6] Huagn J., Zou J., “A mortar element method for elliptic problems with discontinuous coefficients”, IMA J. Numer. Anal., 22 (2002), 549–576 | DOI

[7] Ben Belgacem F., “The mixed mortar fifnite element method for the incompressible Stokes problem: convergence analysis”, SIAM J. Numer. Anal., 37:4 (2000), 1085–1100 | DOI

[8] Rukavishnikov A. V., Rukavishnikov V. A., “Nekonformnyi metod konechnykh elementov dlya zadachi Stoksa s razryvnym koeffitsientom”, Sib. zhurnal industr. matem., 10:4 (2007), 104–117

[9] Rukavishnikov A. V., “O postroenii chislennogo metoda dlya zadachi Stoksa s razryvnym koeffitsientom vyazkosti”, Vychisl. tekhnologii, 143:2 (2009), 110–123

[10] Rukavishnikov A. V., “Nekonformnyi metod konechnykh elementov dlya odnoi zadachi gidrodinamiki s krivolineinym interfeisom”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 1072–1094

[11] Olshanskii M. A., Reusken A., “Analisis of a Stokes interface problem”, Numer. Math., 103 (2006), 129–149 | DOI

[12] Chizhonkov E. V., “O chislennom reshenii zadachi Stoksa s interfeisom”, Zh. vychisl. matem. i matem. fiz., 49:1 (2009), 111–122

[13] Ohmori K., Saito N., “On the convergence of finite element solutions to the interface problem for the Stokes system”, J. Comput. Appl. Math., 198:1 (2007), 116–128 | DOI

[14] Ohmori K., Saito N., “Flux-free finite element method with Lagrange multipliers for two-fluid flows”, J. Sci. Comput., 32:2 (2007), 147–173 | DOI

[15] Gordon W. J., Hall Ch. A., “Transfinite element methods: Blending functions interpolation over arbitrary curved element domains”, Numer. Math., 21 (1973), 109–129 | DOI

[16] Amrouche C., Girault V., “On the existence and regularity of the solution of Stojes problem in arbitrary dimention”, Proc. Japan. Acad., 67 (1991), 171–175 | DOI

[17] Quanteroni A., Valli A., Domain decomposition methods for partial differential euations, Clarendon Press, Oxford, 1999

[18] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstva Korna”, Uspekhi matem. nauk, 43:5 (1988), 55–98

[19] Rukavishnikov A. V., “O suschestvovanii i edinstvennosti obobschennogo resheniya zadachi Stoksa s razryvnym mnozhitelem”, Nauka — Khabarovskomu krayu, Materialy VII kraevogo konkursa-konferentsii molodykh uchenykh, Izd-vo KhGTU, Khabarovsk, 2005, 75–94

[20] Syarle F., Metod konechnykh elementov dlya ellipticheskikh uravnenii, Mir, M., 1980

[21] Richter T., Numerical methods for fluid-structure interaction problems, Course of lectures, , 2010 http://numeric/uni-hd.de/richter/SS10/fsi.pdf

[22] Grisvard P., Elliptic problems in nonsmooth domains, Pitman, Boston, 1985

[23] Bramble J. H., Pasciak J. E., Vassilev A. T., “Analysis of the inexact Uzawa algorithm for saddle point problems”, SIAM J. Numer. Anal., 34:3 (1997), 1072–1092 | DOI

[24] Saad Y., Iterative methods for sparse linear systems, New Jersey PWS, 1996