A numerical method for solving one nonlocal boundary value problem for a third-order hyperbolic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1497-1514
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlocal boundary value problem for a third-order hyperbolic equation with variable coefficients is considered in the one- and multidimensional cases. A priori estimates for the nonlocal problem are obtained in the differential and difference formulations. The estimates imply the stability of the solution with respect to the initial data and the right-hand side on a layer and the convergence of the difference solution to the solution of the differential problem.
@article{ZVMMF_2014_54_9_a5,
     author = {M. Kh. Beshtokov},
     title = {A numerical method for solving one nonlocal boundary value problem for a third-order hyperbolic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1497--1514},
     year = {2014},
     volume = {54},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a5/}
}
TY  - JOUR
AU  - M. Kh. Beshtokov
TI  - A numerical method for solving one nonlocal boundary value problem for a third-order hyperbolic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1497
EP  - 1514
VL  - 54
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a5/
LA  - ru
ID  - ZVMMF_2014_54_9_a5
ER  - 
%0 Journal Article
%A M. Kh. Beshtokov
%T A numerical method for solving one nonlocal boundary value problem for a third-order hyperbolic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1497-1514
%V 54
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a5/
%G ru
%F ZVMMF_2014_54_9_a5
M. Kh. Beshtokov. A numerical method for solving one nonlocal boundary value problem for a third-order hyperbolic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1497-1514. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a5/

[1] Barenblat G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii odnorodnykh zhidkostei v treschinovatykh porodakh”, Prikl. matem. i mekhan., 25:5 (1960), 852–864

[2] Dzektser E. S., “Uravneniya dvizheniya podzemnykh vod so svobodnoi poverkhnostyu v mnogosloinykh sredakh”, Dokl. AN SSSR, 220:3 (1975), 540–543

[3] Rubinshtein L. I., “K voprosu o protsesse rasprostraneniya tepla v geterogennykh sredakh”, Izvestiya AN SSSR. Ser. Geogr., 12:1 (1948), 27–45

[4] Ting T., Cooling A., “Process according to two temperature theory of heat conduction”, J. Math. Anal. Appl., 45:9 (1974)

[5] Hallaire M., L'eau et la production vegetable, No 9, Inst. National de la Recherche Agronomique, 1964

[6] Chudnovskii A. F., Teplofizika pochv, Nauka, M., 1976

[7] Colton D. L., “Pseudoparabolic equations in one space variable”, J. Different equat., 12 (1972), 559–565 | DOI

[8] Colton D. L., “Integral operators and the first initial-boundary value problems for pseudoparabolic equations with analytic coefficients”, J. Different equat., 13 (1973), 506–522 | DOI

[9] Akhiev S. S., Guseinov O. M., O fundamentalnom reshenii odnoi kraevoi zadachi dlya giperbolicheskogo uravneniya tretego poryadka, Azerb. un-t, Baku, 1983

[10] Vodakhova V. A., “Kraevaya zadacha s nelokalnym usloviem A. M. Nakhusheva dlya odnogo psevdoparabolicheskogo uravneniya vlagoperenosa”, Differents. ur-niya, 18:2 (1982), 280–285

[11] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Izd. Kazansk. matem. o-va, Kazan, 2001

[12] Kozhanov A. I., “Ob odnoi nelokalnoi kraevoi zadache s peremennymi koeffitsientami dlya uravnenii teploprovodnosti i Allera”, Differents. ur-niya, 40:6 (2004), 763–774

[13] Shkhanukov M. Kh., “Issledovanie kraevykh zadach dlya odnogo klassa uravnenii tretego poryadka metodom funktsii Rimana”, Soobscheniya AN GSSR, 1983

[14] Shkhanukov M. X., “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differents. ur-niya, 18:4 (1982), 689–699

[15] Coleman B. D., Duffin R. J., Mizel V. J., “Instability, uniqueness, and nonexistence theorems for the equation $u_t=u_{xx}-u_{xxt}$ on a strip”, Arch. Rat. Mech. Analys.

[16] Showalter R. E., Ting T., “Pseudoparabolic partial differential equations”, SIAM J. Math. Analys., 1 (1970), 1–26 | DOI

[17] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983

[18] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[19] Andreev V. B., “O skhodimosti raznostnykh skhem, approksimiruyuschikh vtoruyu i tretyu kraevye zadachi dlya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 8:6 (1968), 1218–1231

[20] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973

[21] Beshtokov M. Kh., “O skhodimosti raznostnykh skhem, approksimiruyuschikh tretyu kraevuyu zadachu dlya uravneniya giperbolicheskogo tipa v mnogomernoi oblasti s nelokalnym kraevym usloviem”, Izv. KBNTs RAN. Nalchik, 3(19):1 (2007), 88–96

[22] Samarskii A. A., “Odnorodnye raznostnye skhemy na neravnomernykh setkakh dlya uravnenii parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 3:2 (1963), 266–298