Study of the Bellman equation in a production model with unstable demand
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1465-1496
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A production model with allowance for a working capital deficit and a restricted maximum possible sales volume is proposed and analyzed. The study is motivated by the urgency of analyzing well-known problems of functioning low competitive macroeconomic structures. The original formulation of the task represents an infinite-horizon optimal control problem. As a result, the model is formalized in the form of a Bellman equation. It is proved that the corresponding Bellman operator is a contraction and has a unique fixed point in the chosen class of functions. A closed-form solution of the Bellman equation is found using the method of steps. The influence of the credit interest rate on the firm market value assessment is analyzed by applying the developed model.
@article{ZVMMF_2014_54_9_a4,
     author = {N. K. Obrosova and A. A. Shananin},
     title = {Study of the {Bellman} equation in a production model with unstable demand},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1465--1496},
     year = {2014},
     volume = {54},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a4/}
}
TY  - JOUR
AU  - N. K. Obrosova
AU  - A. A. Shananin
TI  - Study of the Bellman equation in a production model with unstable demand
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1465
EP  - 1496
VL  - 54
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a4/
LA  - ru
ID  - ZVMMF_2014_54_9_a4
ER  - 
%0 Journal Article
%A N. K. Obrosova
%A A. A. Shananin
%T Study of the Bellman equation in a production model with unstable demand
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1465-1496
%V 54
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a4/
%G ru
%F ZVMMF_2014_54_9_a4
N. K. Obrosova; A. A. Shananin. Study of the Bellman equation in a production model with unstable demand. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1465-1496. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a4/

[1] Petrov A. A., Pospelov I. G., Shananin A. A., Opyt matematicheskogo modelirovaniya ekonomiki, Energoatomizdat, M., 1996

[2] Petrov A. A., Pospelov I. G., Shananin A. A., Ot Gosplana k neeffektivnomu rynku. Matematicheskii analiz rossiiskikh ekonomicheskikh struktur, The Edwin Mellen Press, Lewinston, N.Y., 1999

[3] Obrosova N. K., Rudeva A. V., Flerova A. Yu., Shananin A. A., Otsenka vliyaniya gosudarstvennoi energeticheskoi politiki na perekhodnye protsessy v ekonomike Rossii, VTs RAN, M., 2007

[4] Avtukhovich E. V., Shananin A. A., “Otrasl proizvodstva v usloviyakh defitsita oborotnykh sredstv”, Matem. modelirovanie, 12:7 (2000), 102–126

[5] Akparova A. V., Shananin A. A., “Model proizvodstva v usloviyakh nesovershennoi kreditnoi sistemy i nestabilnoi realizatsii produktsii”, Matem. modelirovanie, 17:9 (2005), 60–76

[6] Houthakker H. S., “The Pareto distribution and the Cobb–Douglas production function in activity analysis”, Rev. Econ. Studies, 23(1):60 (1955–56), 27–31 | DOI

[7] Johansen L., Outline of an approach to production studies, Mem. Inst. Econ. Univ. of Oslo, 28 april, Oslo, 1969

[8] Johansen L., Hersoug T., Derivation of macro production functions from distributions of micro units with respect to input coefficients. Some mathematical illustrations, Mem. Inst. Econ. Univ. of Oslo, 18 october, Oslo, 1969

[9] Johansen L., Production functions, North Holland Co., Amsterdam–London, 1972

[10] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976

[11] Obrosova N. K., Shananin A. A., “Model proizvodstva v usloviyakh nestabilnogo sprosa s uchetom vliyaniya torgovoi infrastruktury”, Dokl. AN, 450:1 (2013), 28–31 | DOI