@article{ZVMMF_2014_54_9_a3,
author = {V. E. Berezkin and A. V. Lotov},
title = {Comparison of two {Pareto} frontier approximations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1455--1464},
year = {2014},
volume = {54},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a3/}
}
TY - JOUR AU - V. E. Berezkin AU - A. V. Lotov TI - Comparison of two Pareto frontier approximations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1455 EP - 1464 VL - 54 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a3/ LA - ru ID - ZVMMF_2014_54_9_a3 ER -
V. E. Berezkin; A. V. Lotov. Comparison of two Pareto frontier approximations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1455-1464. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a3/
[1] Krasnoschekov P. S., Morozov V. V., Fedorov V. V., “Dekompozitsiya v zadachakh proektirovaniya”, Izv. AN SSSR. Ser. Tekhn. Kibernetika, 1979, no. 2, 7–17
[2] Evtushenko Yu. G., Potapov M. A., “Metody chislennogo resheniya mnogokriterialnykh zadach”, Dokl. AN SSSR, 291 (1986), 25–29
[3] Shtoier R., Mnogokriterialnaya optimizatsiya, Radio i svyaz, M., 1992
[4] Larichev O. I., Ob'ektivnye modeli i sub'ektivnye resheniya, Nauka, M., 1987
[5] Miettinen K. M., Nonlinear multiobjective optimization, Kluwer, Boston, 1999
[6] Lotov A. V., Pospelova I. I., Konspekt lektsii po teorii i metodam mnogokriterialnoi optimizatsii, MGU, M., 2006
[7] Larichev O., “Cognitive validity in design of decision-aiding techniques”, J. Multi-Criteria Decision Analys., 1:3 (1992) | DOI
[8] Deb K., Multi-objective optimization using evolutionary algorithms, Wiley, Chichester, UK, 2001
[9] Deb K., “Introduction to evolutionary multiobjective optimization”, Multiobjective Optimization. Interactive and Evolutionary Approaches, Lect. Notes in Computer Sci., 5252, eds. Branke J., Deb K., Miettinen K., Slowinski R. (eds.), Springer, Berlin–Heidelberg, 2008, 59–96 | DOI
[10] Coello C. A. C., Van Veldhuizen D. A., Lamont G. B., Evolutionary algorithms for solving multi-objective optimization problems, Kluwer, Boston, 2002
[11] Roy B., “Decisions avec criteres multiples”, Metra internat., 11:1 (1972), 121–151
[12] Sawaragi Y., Nakayama H., Tanino T., Theory of multiobjective optimization, Acad. Press, Orlando, 1985
[13] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[14] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. approximation and visualization of Pareto frontier, Kluwer, Boston, 2004
[15] Lotov A., Berezkin V., Kamenev G., Miettinen K., “Optimal control of cooling process in continuous casting of steel using a visualization-based multi-criteria approach”, Appl. Math. Modelling, 29:7 (2005), 653–672 | DOI
[16] Castelletti A., Lotov A., Soncini-Sessa R., “Visualization-based multi-criteria improvement of environmental decision-making using linearization of response surfaces”, Environmental Modelling and Software, 25 (2010), 1552–1564 | DOI
[17] Lotov A. V., Bratus A. S., Gorbun N. S., “Pareto frontier visualization in multi-criteria search for efficient therapy strategies: HIV infection example”, Russian J. Numerical Analys. Math. Modelling, 27:5 (2012), 441–458 | DOI
[18] Zitzler E., Knowles J., Thiele L., “Quality assessment of Pareto set approximations”, Multiobjective Optimization. Interactive and Evolutionary Approaches, Lecture Notes in Computer Science, 5252, eds. J. Branke, K. Deb, K. Miettinen, R. Slowinski, Springer, Berlin, 2008, 373–404 | DOI
[19] Zitzler E., Thiele L., Laumanns M., Fonseca C. M., Grunert da Fonseca V., “Performance assessment of multiobjective optimizers: an analysis and review”, IEEE Transactions on Evolutionary Comput., 7:2 (2003), 117–132 | DOI
[20] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982
[21] Kamenev G. K., Kondratev D. L., “Ob odnom metode issledovaniya nezamknutykh nelineinykh modelei”, Matem. modelirovanie, 1992, no. 3, 105–118
[22] Lotov A. V., Ryabikov A. I., Buber A. L., “Vizualizatsiya granitsy Pareto pri razrabotke pravil upravleniya GES”, Iskusstvennyi intellekt i prinyatie reshenii, 2013, no. 1, 70–83
[23] Berezkin V. E., Kamenev G. K., Lotov A. V., “Gibridnye adaptivnye metody approksimatsii nevypukloi mnogomernoi paretovoi granitsy”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2009–2023
[24] Ryabikov A. I., “O metode erzats-funktsii dlya minimizatsii konechnoznachnoi funktsii na kompaktnom mnozhestve”, Zh. vychisl. matem. i matem. fiz., 54:2 (2014), 195–207 | DOI
[25] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982
[26] Kamenev G. K., Lotov A. V., Maiskaya T. S., “Iterativnyi metod postroeniya pokrytii mnogomernoi edinichnoi sfery”, Zh. vychisl. matem. i matem. fiz., 53:2 (2013), 181–194 | DOI