Comparison of two Pareto frontier approximations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1455-1464
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for comparing two approximations to the multidimensional Pareto frontier in nonconvex nonlinear multicriteria optimization problems, namely, the inclusion functions method is described. A feature of the method is that Pareto frontier approximations are compared by computing and comparing inclusion functions that show which fraction of points of one Pareto frontier approximation is contained in the neighborhood of the Edgeworth–Pareto hull approximation for the other Pareto frontier.
@article{ZVMMF_2014_54_9_a3,
     author = {V. E. Berezkin and A. V. Lotov},
     title = {Comparison of two {Pareto} frontier approximations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1455--1464},
     year = {2014},
     volume = {54},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a3/}
}
TY  - JOUR
AU  - V. E. Berezkin
AU  - A. V. Lotov
TI  - Comparison of two Pareto frontier approximations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1455
EP  - 1464
VL  - 54
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a3/
LA  - ru
ID  - ZVMMF_2014_54_9_a3
ER  - 
%0 Journal Article
%A V. E. Berezkin
%A A. V. Lotov
%T Comparison of two Pareto frontier approximations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1455-1464
%V 54
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a3/
%G ru
%F ZVMMF_2014_54_9_a3
V. E. Berezkin; A. V. Lotov. Comparison of two Pareto frontier approximations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1455-1464. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a3/

[1] Krasnoschekov P. S., Morozov V. V., Fedorov V. V., “Dekompozitsiya v zadachakh proektirovaniya”, Izv. AN SSSR. Ser. Tekhn. Kibernetika, 1979, no. 2, 7–17

[2] Evtushenko Yu. G., Potapov M. A., “Metody chislennogo resheniya mnogokriterialnykh zadach”, Dokl. AN SSSR, 291 (1986), 25–29

[3] Shtoier R., Mnogokriterialnaya optimizatsiya, Radio i svyaz, M., 1992

[4] Larichev O. I., Ob'ektivnye modeli i sub'ektivnye resheniya, Nauka, M., 1987

[5] Miettinen K. M., Nonlinear multiobjective optimization, Kluwer, Boston, 1999

[6] Lotov A. V., Pospelova I. I., Konspekt lektsii po teorii i metodam mnogokriterialnoi optimizatsii, MGU, M., 2006

[7] Larichev O., “Cognitive validity in design of decision-aiding techniques”, J. Multi-Criteria Decision Analys., 1:3 (1992) | DOI

[8] Deb K., Multi-objective optimization using evolutionary algorithms, Wiley, Chichester, UK, 2001

[9] Deb K., “Introduction to evolutionary multiobjective optimization”, Multiobjective Optimization. Interactive and Evolutionary Approaches, Lect. Notes in Computer Sci., 5252, eds. Branke J., Deb K., Miettinen K., Slowinski R. (eds.), Springer, Berlin–Heidelberg, 2008, 59–96 | DOI

[10] Coello C. A. C., Van Veldhuizen D. A., Lamont G. B., Evolutionary algorithms for solving multi-objective optimization problems, Kluwer, Boston, 2002

[11] Roy B., “Decisions avec criteres multiples”, Metra internat., 11:1 (1972), 121–151

[12] Sawaragi Y., Nakayama H., Tanino T., Theory of multiobjective optimization, Acad. Press, Orlando, 1985

[13] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997

[14] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. approximation and visualization of Pareto frontier, Kluwer, Boston, 2004

[15] Lotov A., Berezkin V., Kamenev G., Miettinen K., “Optimal control of cooling process in continuous casting of steel using a visualization-based multi-criteria approach”, Appl. Math. Modelling, 29:7 (2005), 653–672 | DOI

[16] Castelletti A., Lotov A., Soncini-Sessa R., “Visualization-based multi-criteria improvement of environmental decision-making using linearization of response surfaces”, Environmental Modelling and Software, 25 (2010), 1552–1564 | DOI

[17] Lotov A. V., Bratus A. S., Gorbun N. S., “Pareto frontier visualization in multi-criteria search for efficient therapy strategies: HIV infection example”, Russian J. Numerical Analys. Math. Modelling, 27:5 (2012), 441–458 | DOI

[18] Zitzler E., Knowles J., Thiele L., “Quality assessment of Pareto set approximations”, Multiobjective Optimization. Interactive and Evolutionary Approaches, Lecture Notes in Computer Science, 5252, eds. J. Branke, K. Deb, K. Miettinen, R. Slowinski, Springer, Berlin, 2008, 373–404 | DOI

[19] Zitzler E., Thiele L., Laumanns M., Fonseca C. M., Grunert da Fonseca V., “Performance assessment of multiobjective optimizers: an analysis and review”, IEEE Transactions on Evolutionary Comput., 7:2 (2003), 117–132 | DOI

[20] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982

[21] Kamenev G. K., Kondratev D. L., “Ob odnom metode issledovaniya nezamknutykh nelineinykh modelei”, Matem. modelirovanie, 1992, no. 3, 105–118

[22] Lotov A. V., Ryabikov A. I., Buber A. L., “Vizualizatsiya granitsy Pareto pri razrabotke pravil upravleniya GES”, Iskusstvennyi intellekt i prinyatie reshenii, 2013, no. 1, 70–83

[23] Berezkin V. E., Kamenev G. K., Lotov A. V., “Gibridnye adaptivnye metody approksimatsii nevypukloi mnogomernoi paretovoi granitsy”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2009–2023

[24] Ryabikov A. I., “O metode erzats-funktsii dlya minimizatsii konechnoznachnoi funktsii na kompaktnom mnozhestve”, Zh. vychisl. matem. i matem. fiz., 54:2 (2014), 195–207 | DOI

[25] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982

[26] Kamenev G. K., Lotov A. V., Maiskaya T. S., “Iterativnyi metod postroeniya pokrytii mnogomernoi edinichnoi sfery”, Zh. vychisl. matem. i matem. fiz., 53:2 (2013), 181–194 | DOI