Algorithms for projecting a point onto a level surface of a continuous function on a compact set
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1448-1454
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given an equation $f(x)=0$, the problem of finding its solution nearest to a given point is considered. In contrast to the authors’ previous works dealing with this problem, exact algorithms are proposed assuming that the function $f$ is continuous on a compact set. The convergence of the algorithms is proved, and their performance is illustrated with test examples.
@article{ZVMMF_2014_54_9_a2,
     author = {N. K. Arutyunova and A. M. Dulliev and V. I. Zabotin},
     title = {Algorithms for projecting a point onto a level surface of a continuous function on a compact set},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1448--1454},
     year = {2014},
     volume = {54},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a2/}
}
TY  - JOUR
AU  - N. K. Arutyunova
AU  - A. M. Dulliev
AU  - V. I. Zabotin
TI  - Algorithms for projecting a point onto a level surface of a continuous function on a compact set
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1448
EP  - 1454
VL  - 54
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a2/
LA  - ru
ID  - ZVMMF_2014_54_9_a2
ER  - 
%0 Journal Article
%A N. K. Arutyunova
%A A. M. Dulliev
%A V. I. Zabotin
%T Algorithms for projecting a point onto a level surface of a continuous function on a compact set
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1448-1454
%V 54
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a2/
%G ru
%F ZVMMF_2014_54_9_a2
N. K. Arutyunova; A. M. Dulliev; V. I. Zabotin. Algorithms for projecting a point onto a level surface of a continuous function on a compact set. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1448-1454. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a2/

[1] Bauschke H. H., Borwein J. M., “On projection algorithms for solving convex feasibility problems”, SIAM Review, 38:3 (1996), 367–426 | DOI

[2] Pang C. H. J., Set intersection problems: Supporting hyperplanes and quadratic programming, 2012, arXiv: 1212.6843v1

[3] Nurminskii E. A., “O skhodimosti metoda podkhodyaschikh affinnykh podprostranstv dlya resheniya zadachi o naimenshem rasstoyanii do simpleksa”, Zh. vychisl. matem. i matem. fiz., 45:11 (2005), 1991–1999

[4] Tuy H., Al-Khayyal F., Thach P. T., “Monotonic optimization: Branch and cut methods”, Essays and Surveys in Global Optimization, eds. C. Audet, P. Hansen, G. Savard, Springer, 2005, 39–78 | DOI

[5] Ortega Dzh., Reinbolt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975

[6] Zabotin V. I., Dulliev A. M., “Iteratsionnyi algoritm proektirovaniya tochki na nevypukloe mnogoobrazie v lineinom normirovannom prostranstve”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 827–830

[7] Zabotin V. I., Arutyunova N. K., “Dva algoritma otyskaniya proektsii tochki na nevypukloe mnozhestvo v normirovannom prostranstve”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 344–349 | DOI

[8] Vanderbei R. J., “Extension of Piyavskii's algorithm to continuous global optimization”, J. Global Optimization, 14 (1999), 205–216 | DOI