Discontinuous Steklov operators in the problem of uniform approximation of derivatives on an interval
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1442-1557
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With the help of discontinuous Steklov operators, families of integral operators are constructed, which are used to obtain uniform approximations to derivatives of an arbitrary order for a function given on an interval.
@article{ZVMMF_2014_54_9_a1,
     author = {A. P. Khromov and G. V. Khromova},
     title = {Discontinuous {Steklov} operators in the problem of uniform approximation of derivatives on an interval},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1442--1557},
     year = {2014},
     volume = {54},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a1/}
}
TY  - JOUR
AU  - A. P. Khromov
AU  - G. V. Khromova
TI  - Discontinuous Steklov operators in the problem of uniform approximation of derivatives on an interval
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1442
EP  - 1557
VL  - 54
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a1/
LA  - ru
ID  - ZVMMF_2014_54_9_a1
ER  - 
%0 Journal Article
%A A. P. Khromov
%A G. V. Khromova
%T Discontinuous Steklov operators in the problem of uniform approximation of derivatives on an interval
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1442-1557
%V 54
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a1/
%G ru
%F ZVMMF_2014_54_9_a1
A. P. Khromov; G. V. Khromova. Discontinuous Steklov operators in the problem of uniform approximation of derivatives on an interval. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1442-1557. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a1/

[1] Khromov A. P., Khromova G. V., “Ob odnoi modifikatsii operatora Steklova. Sovr. probl. teorii funktsii i ikh prilozheniya”, Tezisy dokl. Sarat. zimn. shk., Izd-vo Sarat. un-ta, Saratov, 2010, 181

[2] Khromov A. A., “O priblizhenii funktsii vmeste s ee proizvodnoi na otrezke. Sovr. probl. teorii funktsii i ikh prilozheniya”, Materialy 17-i mezhdun. Sarat. zimn. shk., Nauchnaya kniga, Saratov, 2014, 285–287

[3] Ivanov V. K., “Ob integralnykh uravneniyakh Fredgolma pervogo roda”, Differents. ur-niya, 3:3 (1967), 410–421

[4] Krechmar V. A., Zadachnik po algebre, Nauka, M., 1968