Discontinuous Steklov operators in the problem of uniform approximation of derivatives on an interval
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1442-1557
With the help of discontinuous Steklov operators, families of integral operators are constructed, which are used to obtain uniform approximations to derivatives of an arbitrary order for a function given on an interval.
@article{ZVMMF_2014_54_9_a1,
author = {A. P. Khromov and G. V. Khromova},
title = {Discontinuous {Steklov} operators in the problem of uniform approximation of derivatives on an interval},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1442--1557},
year = {2014},
volume = {54},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a1/}
}
TY - JOUR AU - A. P. Khromov AU - G. V. Khromova TI - Discontinuous Steklov operators in the problem of uniform approximation of derivatives on an interval JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1442 EP - 1557 VL - 54 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a1/ LA - ru ID - ZVMMF_2014_54_9_a1 ER -
%0 Journal Article %A A. P. Khromov %A G. V. Khromova %T Discontinuous Steklov operators in the problem of uniform approximation of derivatives on an interval %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1442-1557 %V 54 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a1/ %G ru %F ZVMMF_2014_54_9_a1
A. P. Khromov; G. V. Khromova. Discontinuous Steklov operators in the problem of uniform approximation of derivatives on an interval. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1442-1557. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a1/
[1] Khromov A. P., Khromova G. V., “Ob odnoi modifikatsii operatora Steklova. Sovr. probl. teorii funktsii i ikh prilozheniya”, Tezisy dokl. Sarat. zimn. shk., Izd-vo Sarat. un-ta, Saratov, 2010, 181
[2] Khromov A. A., “O priblizhenii funktsii vmeste s ee proizvodnoi na otrezke. Sovr. probl. teorii funktsii i ikh prilozheniya”, Materialy 17-i mezhdun. Sarat. zimn. shk., Nauchnaya kniga, Saratov, 2014, 285–287
[3] Ivanov V. K., “Ob integralnykh uravneniyakh Fredgolma pervogo roda”, Differents. ur-niya, 3:3 (1967), 410–421
[4] Krechmar V. A., Zadachnik po algebre, Nauka, M., 1968