Studies on the zeros of Bessel functions and methods for their computation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1387-1441
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The zeros of Bessel functions play an important role in computational mathematics, mathematical physics, and other areas of natural sciences. Studies addressing these zeros (their properties, computational methods) can be found in various sources. This paper offers a detailed overview of the results concerning the real zeros of the Bessel functions of the first and second kinds and general cylinder functions. The author intends to publish several overviews on this subject. In this first publication, works dealing with real zeros are analyzed. Primary emphasis is placed on classical results, which are still important. Some of the most recent publications are also discussed.
@article{ZVMMF_2014_54_9_a0,
     author = {M. K. Kerimov},
     title = {Studies on the zeros of {Bessel} functions and methods for their computation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1387--1441},
     year = {2014},
     volume = {54},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a0/}
}
TY  - JOUR
AU  - M. K. Kerimov
TI  - Studies on the zeros of Bessel functions and methods for their computation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1387
EP  - 1441
VL  - 54
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a0/
LA  - ru
ID  - ZVMMF_2014_54_9_a0
ER  - 
%0 Journal Article
%A M. K. Kerimov
%T Studies on the zeros of Bessel functions and methods for their computation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1387-1441
%V 54
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a0/
%G ru
%F ZVMMF_2014_54_9_a0
M. K. Kerimov. Studies on the zeros of Bessel functions and methods for their computation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 9, pp. 1387-1441. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_9_a0/

[1] Abramowitz V., Stegun I. N. (eds.), Handbook of mathematical functions, Applied Mathematical series, 55, 10th edit., National Bureau of Standards, Washington; Dover Publications, Inc., New York, 1964; V. A. Ditkin, L. N. Karmazina (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979

[2] Airey J. R., “The numerical calculation of the roots of the Bessel function $J_n(x)$ and its first derivative $J_n'(x)$”, Philos. Magazine, 34 (1917), 189–195 | DOI

[3] Baehr G. F. W., “Sur les racines des equations $\int_0^\pi \cos(x\cos\omega)d\omega=0$, $\int_0^\pi \cos(x\cos\omega)\sin^2\omega d\omega=0$”, Archives Neerlandaises, 7 (1872), 351–358

[4] Banerjee D. P., “A further note on the zeros of Bessel functions”, J. Indian Math. Soc., 2:2 (1936), 211–212

[5] Bernoulli D., “Theoremata de oscillationibus corporum.filo flexibili connexorum et catenae verticaliter suspensae”, Comm. Acad. Sci. Imper. Petropolitana (1732–1733), 1738, 106–122

[6] Bessel F. W., Untersuchung des Theils der planetarischen Strömung welcher aus Bewegung der Sonne entsheht, Jan. 29, 1824, Berliner Abhandlungen, 1824 [1826], 55 pp.; Bessel F. W., Abhandlungen, v. 1, 1875, 84–109

[7] Bourget J., “Mémoire sur le movement vibrtoire des membranes circulaires”, Annal. Sci. de l'Ecole normale Superier, 3 (1866), 55–95

[8] Bryan G. H., “On the waves on a viscous rotating cylinder”, Proc. Cambridge Philos. Soc., 6 (1889), 248–264

[9] Carslaw H. S., Conduction of Heat London, Oxford University Press, 1921

[10] Chambers L. G., “An upper bound for the first zero of Bessel functions”, Math. of Comput., 38:156 (1982), 589–591 | DOI

[11] Dixon A. C., “On a property of Bessel's functions”, Mesenger of Math., 32 (1902), 7–8

[12] Elbert A., “An approximation for the zeros of Bessel functions”, Numer. Math., 59 (1991), 648–657 | DOI

[13] Elbert A., “Some recent results on the zeros of Bessel functions and orthogonal polynomials”, J. Comput. Appl. Math., 133:1–2 (2001), 65–83 | DOI

[14] Elbert A., Laforgia A., “An asymptotic relation for the zeros of Bessel functions”, J. Math. Anal. Appl., 98:2 (1984), 502–511 | DOI

[15] Elbert A., Laforgia A., “On the square of the zeros of Bessel functions”, SIAM J. Math. Anal., 15:1 (1984), 206–212 | DOI

[16] Elbert A., Laforgia A., “Further results on McMahon's asymptotic approximations”, J. of Phys. A: Math. and Generale, 33:36 (2000), 6338–6341

[17] Förster K.-J., Petras K., “Inequalities for the zeros of ultraspherical polynomials and Bessel functions”, Z. Angew. Math. und Mech., 73:9 (1993), 232–236 | DOI

[18] A. Freeman (transl.), Cambridge University Press, Cambridge, 1878

[19] Gasser A., “Über die Nullstellen der Besselschen Funktionen”, Mitteilungen der Naturforschung. Geselschaft in Bern., 1904, no. 1580, 92–135

[20] Gatteschi L., “Valutazione dell errore nella formula di MacMahon per gli zeri delle $J_n(z)$ di Bessel nel. caso $0\leqslant n\leqslant 1$”, Revista Mat. Univ. Parma, 1 (1950), 347–362

[21] Gatteschi L., Giardano C., “Error Bounds for McMahon asymptotic approximation of the zeros of Bessel functions”, Integral Transforms and Special functions, 10:1 (2000), 41–56 | DOI

[22] Gray A., Mathews G. B., MacRobert T. M., A treatis on Bessel functions, Second Edition, Macmillan and Co., London, 1931; E. Grei, G. B. Metyuz, Funktsii Besselya i ikh primeneniya k fizike i mekhanike, Perev. so vtorogo angl. izdaniya S. Ya. Kogan, Izd-vo Inostr. lit., M., 1949

[23] Gegenbaner L., “Bemerkung über Bessel'schen Funktionen”, Monatshefte für Math. und Phys., 8 (1897), 383–384 | DOI

[24] Gegenbauer L., “Quelques proprietés nouvelles des racines des fonctions de Bessel de premier espece”, Mem. de la Soc. Roy. des Sci. de Liege, (3)2:3 (1900), 1–7

[25] Grosjean C. C., “The orthogonality property of Lommel polynomials and twofold infinity of relations between Rayleigh's $\sigma$-sums”, J. Comput. and Appl. Math., 10:3 (1984), 355–382 | DOI

[26] Hethcott H. W., “Error bounds for asymptotic approximations of zeros of transcendental functions”, SIAM J. Math. Anal., 1970, no. 2, 147–152 | DOI

[27] Hermite Ch., “Extrait d'une lettre de Monsieur Ch. Hermite à Monsieur E. Jahnke”, Archiv der Math. und Phys., 3:1 (1901), 20–21

[28] Hobson E. W., “Note on some properties Bessel's functionen”, Proc. London Math. Soc., 28 (1897), 370–375

[29] Hobson E. W., Squaring the circle, Cambridge Univ. Press, Cambridge, 1913

[30] Hurwitz A., “Ueber die Nullstellen der Besselschen Funktionen”, Math. Annalen, 33 (1889), 246–266 | DOI

[31] Hurwitz A., “Ueber die Wurzeln einiger transcendenten Gleichungen”, Hamburger Mitteilungen, v. II, 1890, 25–31

[32] Janke E., Emde F., Löseh J., Tafeln höher Funktionen, 6 Auflage, Teubner, Stuttgard, 1960; Yanke E., Emde F., Lesh F., Spetsialnye funktsii, Perev. s nem. pod rukov. L. I. Sedova, Nauka, M., 1977

[33] Kalähne A., “Über die Wurzeln einiger Zylinder functionen und gewisser aus ihnen gebildeter Gleichungen”, Zeitsch. für Math. und Phys., 54:1 (1907), 55–86

[34] Kerimov M. K., “The Rayleigh Function: Theory and Methods for the Calculation”, Comput. Math. and Math. Phys., 39:12 (1999), 1962–2006

[35] Kerimov M. K., “Overview of some results concerning the theory and applications of the Rayleigh special function”, Comput. Math. and Math. Phys., 48:9 (2008), 1454–1507 | DOI

[36] Kerimov M. K., Skorokhodov S. L., “Evoluation of complex zeros of Bessel functions $J_v(z)$ and $I_v(z)$ and their derivatives”, USSR Comput. Math. and Math. Phys., 24 (1984), 131–141 | DOI

[37] Kerimov M. K., Skorokhodov S. L., “Calculation of the multiple zeros of derivatives of the Cylindrical Bessel functions $J_v(z)$ and $Y_v(z)$”, USSR Comput. Math. and Math. Phys., 25:6 (1985), 101–107 | DOI

[38] Kerimov M. K., Skorokhodov S. L., “On multiple zeros of derivatives of Bessel's cylindrical functions”, Soviet Math. Dokl., 33:3 (1986), 650–653

[39] Kuzmin R. O., Besselevy funktsii. Izd-nie vtoroe, pererabotannoe i dopolnennoe, Glavnaya redaktsiya obschetekhnicheskoi literatury, L.–M., 1935, 244 pp.

[40] Laforgia A., “On the zeros of the derivative of Bessel functions of second kind”, Publ. Ist. appl. Calcolo Manro Picone. Ser. 3, 1979, no. 179, 10 pp.

[41] Loforgia A., Notalini P., “Zeros of Bessel functions: monotonicity, concavity, inequality”, Le Mathematiche, 62:2 (2007), 255–270

[42] Lindner P., “Die Beziehungen der begrenzten Ableitungen mit komplexen Zeiger zu den Besselschen Funktionen und ihren Nullstellen”, Sitzungberichte der Berliner Math. Gesellschaft, 11 (1911), 3–5

[43] Lommel E. C. J., Studies über Bessel'schen Funktionen, Teubner, Leipzig, 1868

[44] MacDonald H. M., “Zeroes of the Bessel Functions”, Proc. London Math. Soc., 29 (1898), 575–584

[45] MacDonald H. M., “Zeroes of the Bessel Functions”, Proc. London Math. Soc., 30 (1899), 165–179

[46] MacDonald H. M., “Extract from a letter to Prof. Carslow, Oct. 17, 1912”, Proc. London Math. Soc., 2:13 (1914), 239–240

[47] MacMahon J., “On the Roots of the Bessel and certain Related Functions”, Annals of Math., 9 (1895), 23–30 | DOI

[48] Marshall W., “On a new method of computing the roots of Bessel's functions”, Annals of Math., 2:40 (1910), 153–160 | DOI

[49] Meissel D. F. E., “Beitrag zur Theorie der Bessel'schen Funktionen”, Astron. Nachrichten, 78 (1891), 435–434 | DOI

[50] Miller J. C. P., “On the choice of standard solutions for a homogeneous linear differential equation of the second order”, Quart. J. Mech. and Appl. Math., 3 (1950), 225–235 | DOI

[51] Moor C. N., “Note on the roots of Bessel functions”, Annals of Math., 2:9 (1908), 156–162 | DOI

[52] Olbricht R., “Studien über die Kugel-und Cylinderfunctionen”, Nova Acta Acad. Caes. Leop. (Halle), 1888, 1–48

[53] Olver F. W. J., “A further method for evaluation of zeros of Bessel functions and some new asymptotics expansions of large order”, Proc. Cambridge Philos. Soc., 47:3 (1951), 677–712

[54] Olver F. W. J., “The asymptotic expansion of Bessel functions of large order”, Philos. Trans. Roy. Soc. London, A247:930 (1954), 328–368 | DOI

[55] Olver F. W. J. (ed.), Bessel functions, v. III, Zeros and associated values, Cambridge Univ. Press, Cambrdge, 1960; Olver F. (Red.), Tablitsy nulei funktsii Besselya, Perev. s angl. E. A. Chistovoi, Biblioteka matem. tab., 44, Izd-vo VTs AN SSSR, M., 1967

[56] Olver F. W. J., Asymptotic and Special Functions, Academic Press, New York–London, 1974; Olver F., Asimptotika i spetsialnye funktsii, Perev. s angl. Yu. A. Brychkova, ed. A. P. Prudnikov, Nauka, M., 1990

[57] Poisson S. D., “Mémoire sur le calcul des variations”, Mém. de l' Acad. Roy. des Sci., 12 (1833), 223–331

[58] Porter M. B., “Note on the roots of Bessel's functions”, Bull. Amer. Math. Soc., 4 (1898), 274–275 | DOI

[59] Porter M. B., “On the roots of hypergeometric and Bessel's functions”, Amer. J. of Math., 20:5 (1898), 193–214 | DOI

[60] Rayleigh (Strutt J. W.) Lord, “The Numerical Calculations of the Roots of Fluctuating”, Proc. London Math. Soc., 5 (1874), 119–124; Sci. Papers, 1 (1899), 190–195

[61] Rayleigh (Strutt J. W.) Lord, “On the Vibrations of a Gas contained within a Rigid Spherical Envelope”, Proc. London Math. Soc., 4 (1872), 93–103; Sci. Papers, 1 (1899)

[62] Riemann G. F. B., Partielle Differentialgleichungen und deren Anwendung auf physikalische Fragen, Für den Druck bearbeitet und heransgegeben von Karl Hattendorf, Vieweg, Brunswic, 1876

[63] Rudzki P., “O pewnej klase rownan przestepnych (Ueber eine Klasse transcendenter Gleichungen”, Prace Matematyczno-Fizyczne, 1892, no. 3, 69–81 (Polisch)

[64] Rudzki P., “Note sur la situation des raciness des équations transcendentes $I_{n+1/2}(x)=0$ ou I designe une function de Bessel, $n=0, 1, 2\dots$”, Mém. de la Soc. Roy. des Sci. de Liège (May 10, 1891), 2(18):3 (1895), 1–29

[65] Schafheitlin P., “Ueber die Gauss'sche und Bessel'sche Differentialgleichung und eine neue Integralform der letzteren”, J. für Math., 114 (1895), 31–44

[66] Schafheitlin P., “Die Nullstellen der Bessel'schen Funktionen”, J. für Math., 122 (1900), 299–321

[67] Schafheitlin P., “Über die Nullstellen der Bessel'schen Funktionen zweiter Art”, Archiv der Math. und Phys., 3:1 (1901), 133–137

[68] Schafheitlin P., “Über den Verlauf der Besselschen Funktionen”, Sitzunsberichte Berliner Math. Geselschaft, 3 (1904), 83–85

[69] Schafheitlin P., “Die lage der Nullstellen der Besselschen Funktionen zweiter Art”, Sitzunsberichte Berliner Math. Geselschaft, 5 (1906), 82–93

[70] Schafheitlin P., “Über den Verlauf der Besselschen Funktionen zweiter Art”, Jahresbericht der Deutschen Math. Vereinigung, 16 (1907), 272–279

[71] Schafheitlin P., Theorie der Besselschen Funktionen, B. G. Teubner, Berlin, 1908, VI+129 pp.

[72] Schläfli L., “Ueber die Convergenz der Entwicklung einer arbitraren Funktion $f(x)$ nach den Bessel'schen Funktionen $J^{\alpha}(\beta_1x), J^{\alpha}(\beta_2x), \dots$, wo $\beta_1, \beta_2, \dots$ die positiven Wurzeln der Gleichung $J^\alpha(\beta)=0$ vorstellen”, Math. Annalen, 10 (1876), 137–142 | DOI

[73] Schwerd F. M., Die Beugungserscheinungen aus den Fundamentalgesectzen der Undulationstheorie, Mannheim, 1835

[74] Siegel C. L., “Über einige Anwendungen diophantischer Approximationen”, Abhandlungen der Preussischen Akademie der Wisenschaften. Physikalisch-mathematische Klasse, 1922, no. 1, 1–57; Gesammelte. Alhandlungen, v. 1, Springer, Berlin, 1966, 209–266 | DOI

[75] Stearn H., “On some cases of the varying motion of viscous fluid”, Quarterly Journal, 17 (1880), 90–104

[76] Stokes M. A., “On the numerical calculation of a class of definite integrals and infinite series”, Trans. Cambridge Philas. Soc., 9 (1856), 166–187; Math. and Phys. Papers, v. II, 1883, 329–357

[77] Sturm J. C. F., “Sur les équations differentielles lineares du second order”, Journal de Math., 1 (1836), 106–186

[78] Temme N. M., Special Functions. An Introduction to the Classical Functions of Mathematical Physics, John Wiley and Sons. Inc., New York etc., 1996, 374 pp.

[79] Van Vleck E. B., “On the roots of Bessel and $P$-functions”, Amer. J. Math., 19 (1897), 75–85 | DOI

[80] Watson G. N., “Bessel functions and Kapteyn series”, Proc. London. Math. Soc., 2:16 (1917), 150–174

[81] Watson G. N., “The zeros of Bessel functions”, Proc. Royal Soc. Series A. Math. and Phys. Sci., 94:659 (1918), 190–206 | DOI

[82] Watson G. N., A treatise on the theory of Bessel functions, Second Edit., Cambridge University Press, Cambridge, 1944; G. N. Vatson, Teoriya besselevykh funktsii, Perev. s angl. I. S. Bermana, v. I, II, Izd-vo inostr. lit., M., 1949

[83] Whewell W., “Second memoir on the Intrinsic Equation of a Curve and its Application”, Trans. Cambridge Philos. Soc., 9 (1856), 150–156

[84] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge University Press, Cambridge, 1927; Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Perev. c angl. pod red. G. M. Galuzina, M., 1933–1938; Ф. В. Широков (ред.), изд. третье, Изд-во УФСС, М., 2002, 515 с.

[85] Willson R. H., Peirce B. O., “Table of the forty roots of the Bessel equation $J_0(x)=0$ with the corresponding values of $J_1(x)$”, Bull. Amer. Math. Soc., 33 (1897), 153–155 | DOI