Splitting scheme for poroelasticity and thermoelasticity problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1345-1355 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundary value problems in thermoelasticity and poroelasticity (filtration consolidation) are solved numerically. The underlying system of equations consists of the Lamé stationary equations for displacements and nonstationary equations for temperature or pressure in the porous medium. The numerical algorithm is based on a finite-element approximation in space. Standard stability conditions are formulated for two-level schemes with weights. Such schemes are numerically implemented by solving a system of coupled equations for displacements and temperature (pressure). Splitting schemes with respect to physical processes are constructed, in which the transition to a new time level is associated with solving separate elliptic problems for the desired displacements and temperature (pressure). Unconditionally stable additive schemes are constructed by choosing a weight of a three-level scheme.
@article{ZVMMF_2014_54_8_a9,
     author = {P. N. Vabishchevich and M. V. Vasil'eva and A. E. Kolesov},
     title = {Splitting scheme for poroelasticity and thermoelasticity problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1345--1355},
     year = {2014},
     volume = {54},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a9/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
AU  - M. V. Vasil'eva
AU  - A. E. Kolesov
TI  - Splitting scheme for poroelasticity and thermoelasticity problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1345
EP  - 1355
VL  - 54
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a9/
LA  - ru
ID  - ZVMMF_2014_54_8_a9
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%A M. V. Vasil'eva
%A A. E. Kolesov
%T Splitting scheme for poroelasticity and thermoelasticity problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1345-1355
%V 54
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a9/
%G ru
%F ZVMMF_2014_54_8_a9
P. N. Vabishchevich; M. V. Vasil'eva; A. E. Kolesov. Splitting scheme for poroelasticity and thermoelasticity problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1345-1355. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a9/

[1] Nikolaevskii V. N., Mekhanika poristykh i treschinovatykh sred, Nedra, M., 1984

[2] Wang H., Theory of linear poroelasticity with applications to geomechanics and hydrogeology, Princeton University Press, 2000

[3] Meirmanov A., Mathematical models for poroelastic flows, Springer, Berlin, 2014

[4] Nowacki W., Dynamic problems of thermoelasticity, Springer, Berlin, 1975

[5] Racke R., Jiang S., Evolution equations in thermoelasticity, Taylor Francis, 2000

[6] Lewis R. W., Schrefter B. A., The finite element method in the static and dynamic deformation and consolidation of porous media, Wiley, N.Y., 1998

[7] Murad M. A., Loula A. F. D., “Improved accuracy in finite element analysis of Biot's consolidation problem”, Comput. Meth. Appl. Mech. Enging., 95:3 (1992), 359–382 | DOI

[8] Armero F., “Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions”, Comput. Meth. Appl. Mech. Enging., 1999, no. 3, 205–241 | DOI

[9] Minkoff S. E., Kridler N. M., “A comparison of adaptive time stepping methods for coupled flow and deformation modeling”, Appl. Math. Modelling, 30:8 (2006), 993–1009 | DOI

[10] Haga J. B., Osnes H., Langtangen H. P., “On the causes of pressure oscillations in low-permeable and low-compressible porous media”, Internat. J. Numer. Analyt. Meth. Geomech., 36:12 (2012), 1507–1522 | DOI

[11] Girault V., Raviart P., Finite element methods for Navier–Stokes equations. Theory and algorithms, Springer, Berlin, 1986

[12] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer, Berlin, 1991

[13] Lisbona F. J., Vabishchevich P. N., “Operator-splitting Schemes for Solving Unsteady Elasticity Problems”, Comput. Meth. Appl. Math., 1:2 (2001), 188–198 | DOI

[14] Gaspar F. J., Lishona E. J., Vabishchevich P. N., “A finite difference analysis of Biot's consolidation model”, Appl. Numer. Math., 44:4 (2003), 487–506 | DOI

[15] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989

[16] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference schemes with operator factors, Kluwer, 2002

[17] Marchuk G. I., “Splitting and alternating direction methods”, Handbook of numerical Analysis, v. 1, eds. Philip G. Ciarlet, Jacques-Louis Lions, North-Holland, 1990, 197–462

[18] Vabishchevich P. N., Additive operator-difference schemes. Splitting schemes, de Gruyter, 2014

[19] Armero F., Simo J. C., “A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems”, Internat. J. Numer. Meth. Enging., 35:4 (1992), 737–766 | DOI

[20] Jha B., Juanes R., “A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics”, Acta Geotechnica, 2:3 (2007), 139–153 | DOI

[21] Kim J., Sequential methods for coupled geomechanics and multiphase flow, Ph. D. Thesis, Stanford University, 2010

[22] Mikelić A., Wheeler M. F., “Convergence of iterative coupling for coupled flow and geomechanics”, Comput. Geosciences, 17:3 (2013), 455–461 | DOI

[23] Samarskii A. A., “O regulyarizatsii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 7:1 (1967), 62–93

[24] Hughes T. J. R., The finite element method: linear static and dynamic finite element analysis, Dover, 2012

[25] Zienkiewicz O. C., Taylor R. L., Zhu J. Z., The finite element method: its basis and fundamentals, Butterworth-Heinemann, 2013

[26] Lisbona F. J., Vabishchevich P. N., Gaspar F. J., Oosterlee C. W., “An efficient multigrid solver for a reformulated version of the poroelasticity system”, Comput. Meth. Appl. Mech. Enging., 196:8 (2007), 1447–1457 | DOI

[27] Axelsson O., Blaheta R., Byczanski P., “Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices”, Comput. Vissualizat. in Sci., 15:4 (2013), 191–207 | DOI

[28] Gaspar F., Grigoriev A., Vabishchevich P., “Explicit-implicit splitting schemes for some systems of evolutionary equations”, Internat. J. Numer. Analys. Model., 11:2 (2014), 346–357

[29] Bychenkov Yu. V., Chizhonkov E. V., Iteratsionnye metody resheniya sedlovykh zadach, Binom, M., 2010