@article{ZVMMF_2014_54_8_a9,
author = {P. N. Vabishchevich and M. V. Vasil'eva and A. E. Kolesov},
title = {Splitting scheme for poroelasticity and thermoelasticity problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1345--1355},
year = {2014},
volume = {54},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a9/}
}
TY - JOUR AU - P. N. Vabishchevich AU - M. V. Vasil'eva AU - A. E. Kolesov TI - Splitting scheme for poroelasticity and thermoelasticity problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1345 EP - 1355 VL - 54 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a9/ LA - ru ID - ZVMMF_2014_54_8_a9 ER -
%0 Journal Article %A P. N. Vabishchevich %A M. V. Vasil'eva %A A. E. Kolesov %T Splitting scheme for poroelasticity and thermoelasticity problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1345-1355 %V 54 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a9/ %G ru %F ZVMMF_2014_54_8_a9
P. N. Vabishchevich; M. V. Vasil'eva; A. E. Kolesov. Splitting scheme for poroelasticity and thermoelasticity problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1345-1355. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a9/
[1] Nikolaevskii V. N., Mekhanika poristykh i treschinovatykh sred, Nedra, M., 1984
[2] Wang H., Theory of linear poroelasticity with applications to geomechanics and hydrogeology, Princeton University Press, 2000
[3] Meirmanov A., Mathematical models for poroelastic flows, Springer, Berlin, 2014
[4] Nowacki W., Dynamic problems of thermoelasticity, Springer, Berlin, 1975
[5] Racke R., Jiang S., Evolution equations in thermoelasticity, Taylor Francis, 2000
[6] Lewis R. W., Schrefter B. A., The finite element method in the static and dynamic deformation and consolidation of porous media, Wiley, N.Y., 1998
[7] Murad M. A., Loula A. F. D., “Improved accuracy in finite element analysis of Biot's consolidation problem”, Comput. Meth. Appl. Mech. Enging., 95:3 (1992), 359–382 | DOI
[8] Armero F., “Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions”, Comput. Meth. Appl. Mech. Enging., 1999, no. 3, 205–241 | DOI
[9] Minkoff S. E., Kridler N. M., “A comparison of adaptive time stepping methods for coupled flow and deformation modeling”, Appl. Math. Modelling, 30:8 (2006), 993–1009 | DOI
[10] Haga J. B., Osnes H., Langtangen H. P., “On the causes of pressure oscillations in low-permeable and low-compressible porous media”, Internat. J. Numer. Analyt. Meth. Geomech., 36:12 (2012), 1507–1522 | DOI
[11] Girault V., Raviart P., Finite element methods for Navier–Stokes equations. Theory and algorithms, Springer, Berlin, 1986
[12] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer, Berlin, 1991
[13] Lisbona F. J., Vabishchevich P. N., “Operator-splitting Schemes for Solving Unsteady Elasticity Problems”, Comput. Meth. Appl. Math., 1:2 (2001), 188–198 | DOI
[14] Gaspar F. J., Lishona E. J., Vabishchevich P. N., “A finite difference analysis of Biot's consolidation model”, Appl. Numer. Math., 44:4 (2003), 487–506 | DOI
[15] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989
[16] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference schemes with operator factors, Kluwer, 2002
[17] Marchuk G. I., “Splitting and alternating direction methods”, Handbook of numerical Analysis, v. 1, eds. Philip G. Ciarlet, Jacques-Louis Lions, North-Holland, 1990, 197–462
[18] Vabishchevich P. N., Additive operator-difference schemes. Splitting schemes, de Gruyter, 2014
[19] Armero F., Simo J. C., “A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems”, Internat. J. Numer. Meth. Enging., 35:4 (1992), 737–766 | DOI
[20] Jha B., Juanes R., “A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics”, Acta Geotechnica, 2:3 (2007), 139–153 | DOI
[21] Kim J., Sequential methods for coupled geomechanics and multiphase flow, Ph. D. Thesis, Stanford University, 2010
[22] Mikelić A., Wheeler M. F., “Convergence of iterative coupling for coupled flow and geomechanics”, Comput. Geosciences, 17:3 (2013), 455–461 | DOI
[23] Samarskii A. A., “O regulyarizatsii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 7:1 (1967), 62–93
[24] Hughes T. J. R., The finite element method: linear static and dynamic finite element analysis, Dover, 2012
[25] Zienkiewicz O. C., Taylor R. L., Zhu J. Z., The finite element method: its basis and fundamentals, Butterworth-Heinemann, 2013
[26] Lisbona F. J., Vabishchevich P. N., Gaspar F. J., Oosterlee C. W., “An efficient multigrid solver for a reformulated version of the poroelasticity system”, Comput. Meth. Appl. Mech. Enging., 196:8 (2007), 1447–1457 | DOI
[27] Axelsson O., Blaheta R., Byczanski P., “Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices”, Comput. Vissualizat. in Sci., 15:4 (2013), 191–207 | DOI
[28] Gaspar F., Grigoriev A., Vabishchevich P., “Explicit-implicit splitting schemes for some systems of evolutionary equations”, Internat. J. Numer. Analys. Model., 11:2 (2014), 346–357
[29] Bychenkov Yu. V., Chizhonkov E. V., Iteratsionnye metody resheniya sedlovykh zadach, Binom, M., 2010