Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1319-1331 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The scalar problem of plane wave diffraction by a system of bodies and infinitely thin screens is considered in a quasi-classical formulation. The solution is sought in the classical sense but is defined not in the entire space $\mathbb{R}^3$ but rather everywhere except for the screen edges. The original boundary value problem for the Helmholtz equation is reduced to a system of weakly singular integral equations in the regions occupied by the bodies and on the screen surfaces. The equivalence of the integral and differential formulations is proven, and the solvability of the system in the Sobolev spaces is established. The integral equations are approximately solved by the Bubnov–Galerkin method. The convergence of the method is proved, its software implementation is described, and numerical results are presented.
@article{ZVMMF_2014_54_8_a7,
     author = {M. Yu. Medvedik and Yu. G. Smirnov and A. A. Tsupak},
     title = {Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1319--1331},
     year = {2014},
     volume = {54},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a7/}
}
TY  - JOUR
AU  - M. Yu. Medvedik
AU  - Yu. G. Smirnov
AU  - A. A. Tsupak
TI  - Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1319
EP  - 1331
VL  - 54
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a7/
LA  - ru
ID  - ZVMMF_2014_54_8_a7
ER  - 
%0 Journal Article
%A M. Yu. Medvedik
%A Yu. G. Smirnov
%A A. A. Tsupak
%T Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1319-1331
%V 54
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a7/
%G ru
%F ZVMMF_2014_54_8_a7
M. Yu. Medvedik; Yu. G. Smirnov; A. A. Tsupak. Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1319-1331. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a7/

[1] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987

[2] Durand M., “Layer potentials and boundary value problems for the Helmholtz equation in the complement of a thin obstacle”, Math. Meth. Appl. Sci., 1983, no. 5, 389–421 | DOI

[3] Costabel M., Stephan E., “A direct boundary integral equation method for transmission problems”, J. Math. Anal. Appl., 106 (1985), 367–413 | DOI

[4] Costabel M., “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Analys., 19:3 (1988), 613–626 | DOI

[5] Kirsch A., Lechleiter A., “The operator equations of Lippmann-Schwinger type for acoustic and electromagnetic scattering problems in $L_2$”, Appl. Analys., 88 (2010), 807–830 | DOI

[6] Stephan E. P., “Boundary integral equations for screen problems in $\mathbb{R}^3$”, Integral Equat. Potential Theory, 10:10 (1987), 236–257 | DOI

[7] Ilinskii A. S., Smirnov Yu. G., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh, Radiotekhn., M., 1996

[8] Medvedik M. Yu., Smirnov Yu. G., “Parallelnyi vychislitelnyi algoritm i raschet poverkhnostnykh tokov dlya elektromagnitnoi zadachi difraktsii na ploskom ekrane”, Novye promyshlennye tekhnologii, C (2007)

[9] Smirnov Yu. G., “O skhodimosti metodov Galerkina dlya uravneniya s operatorami, ellipticheskimi na podprostranstvakh, i reshenii uravneniya elektricheskogo polya”, Zh. vychisl. matem. i matem. fiz., 47:1 (2007), 133–143

[10] Medvedik M. Yu., Smirnov Yu. G., “Subierarkhicheskii parallelnyi vychislitelnyi algoritm dlya resheniya zadach difraktsii elektromagnitnykh voln na ploskikh ekranakh”, Radiotekhn. i elektronika, 2008, no. 4, 441–446

[11] Medvedik M. Yu., “Subierarkhicheskii metod resheniya integralnogo uravneniya na poverkhnostyakh proizvolnoi formy”, Izv. vuzov. Povolzhskii region. Fiz.-matem. nauki, 2010, no. 3, 87–95

[12] Samokhin A. B., Integralnye uravneniya i iteratsionnye metody v elektromagnitnom rasseyanii, Radio i svyaz, M., 1998

[13] Smirnov Yu. G., Tsupak A. A., “Issledovanie elektromagnitnoi zadachi difraktsii na dielektricheskom tele metodom ob'emnogo singulyarnogo integralnogo uravneniya”, Differents. ur-niya, 41:9 (2005), 1190–1197

[14] Smirnov Yu. G., Tsupak A. A., “Suschestvovanie i edinstvennost resheniya ob'emnogo singulyarnogo integralnogo uravneniya v zadache difraktsii”, Zh. vychisl. matem. i matem. fiz., 44:12 (2004), 2264–2274

[15] Medvedik M. Yu., “Subierarkhicheskii metod resheniya integralnogo uravneniya Lippmana–Shvingera”, Radiotekhn. i elektronika, 2012, no. 2, 158–163

[16] Medvedik M. Yu., Smirnov Yu. G., “Chislennoe reshenie ob'emnogo singulyarnogo integralnogo uravneniya metodom kollokatsii”, Izv. vuzov. Povolzhskii region. Fiz.-matem. nauki, 2009, no. 4, 91–101

[17] Agranovich M. S., Sobolevskie prostranstva, ikh obobscheniya i ellipticheskie zadachi v oblastyakh s gladkoi i lipshetsevoi granitsei, MTsNMO, M., 2013

[18] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981

[19] Kress R., Linear integral equations. Applied mathematical sciences, Springer, New York Inc., 1989

[20] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984