@article{ZVMMF_2014_54_8_a6,
author = {S. A. Nazarov},
title = {Bounded solutions in a $\mathrm{T}$-shaped waveguide and the spectral properties of~the {Dirichlet} ladder},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1299--1318},
year = {2014},
volume = {54},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a6/}
}
TY - JOUR
AU - S. A. Nazarov
TI - Bounded solutions in a $\mathrm{T}$-shaped waveguide and the spectral properties of the Dirichlet ladder
JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY - 2014
SP - 1299
EP - 1318
VL - 54
IS - 8
UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a6/
LA - ru
ID - ZVMMF_2014_54_8_a6
ER -
%0 Journal Article
%A S. A. Nazarov
%T Bounded solutions in a $\mathrm{T}$-shaped waveguide and the spectral properties of the Dirichlet ladder
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1299-1318
%V 54
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a6/
%G ru
%F ZVMMF_2014_54_8_a6
S. A. Nazarov. Bounded solutions in a $\mathrm{T}$-shaped waveguide and the spectral properties of the Dirichlet ladder. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1299-1318. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a6/
[1] Birman M. Sh., Skvortsov G. E., “O kvadratichnoi summiruemosti starshikh proizvodnykh resheniya zadachi Dirikhle v oblasti s kusochno-gladkoi granitsei”, Izv. vuzov. Matem., 1962, no. 5, 11–21
[2] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994
[3] Nazarov S. A., “Lokalizovannye volny v T-obraznom volnovode”, Akusticheskii zh., 56:6 (2010), 747–758
[4] Nazarov S. A., Shanin A. V., “Raschet kharakteristik zakhvachennykh voln v T-obraznykh volnovodakh”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 96–110
[5] Kuchment P., “Graph models for waves in thin structures”, Waves in Random Media, 12:12 (2002), R1–R24 | DOI
[6] Kuchment P., Post O., “On the spectrum of carbon nano-structures”, Commun. Math. Phys., 275:3 (2007), 805–826 | DOI
[7] Kuchment P., “Quantum graphs and their applications”, Waves in Random media, 14:1, special issue (2004)
[8] Grieser D., “Spectra of graph neighborhoods and scattering”, Proc. London Math. Soc., 97:3 (2008), 718–752 | DOI
[9] Nazarov S. A., “Dvuchlennaya asimptotika reshenii spektralnykh zadach s singulyarnymi vozmuscheniyami”, Matem. sbornik, 181:3 (1990), 291–320
[10] Nazarov S. A., “Asimptoticheskii analiz i modelirovanie sochleneniya massivnogo tela s tonkimi sterzhnyami”, Tr. seminara im. I. G. Petrovskogo, 24, Izd-vo MGU, M., 2004, 95–214
[11] Nazarov S. A., “Otsenki tochnosti modelirovaniya kraevykh zadach na sochlenenii oblastei s razlichnymi predelnymi razmernostyami”, Izv. RAN. Seriya matem., 68:6 (2004), 119–156 | DOI
[12] Nazarov S. A., “O spektre operatora Laplasa na beskonechnoi lestnitse Dirikhle”, Algebra i analiz, 23:6 (2011), 143–176
[13] Nazarov S. A., Plamenevskii B. A., “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Probl. matem. fiz., 13, Izd-vo LGU, L., 1991, 192–244
[14] Umov N. A., Uravneniya dvizheniya energii v telakh, Tipogr. Ulrikha i Shultse, Odessa, 1874
[15] Poynting J. H., “On the transfer of energy in the electromagnetic field”, Phil. Trans. of the Royal Soc. London, 175 (1884), 343–361 | DOI
[16] Mandelshtam L. I., Lektsii po optike, teorii otnositelnosti i kvantovoi mekhanike, Sb. tr., v. 2, Izd-vo AN SSSR, M., 1947
[17] Vorovich I. I., Babeshko V. A., Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979
[18] Nazarov S. A., “Energeticheskie usloviya izlucheniya Mandelshtama i vektor Umova–Pointinga v uprugikh volnovodakh”, Probl. matem. analiza, 72, Novosibirsk, 2013, 101–146
[19] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | DOI
[20] Nazarov S. A., “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, Teor. i matem. fiz., 167:2 (2011), 239–262 | DOI
[21] Leis R., Initial boundary value problems of mathematical physics, B. G. Teubner, Stuttgart, 1986
[22] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980
[23] Van Daik M., Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967
[24] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989
[25] Nazarov S. A., “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sibirsk. matem. zhurnal, 51:5 (2010), 1086–1101
[26] Nazarov S. A., “Prinuditelnaya ustoichivost prostogo sobstvennogo chisla na nepreryvnom spektre volnovoda”, Funktsionalnyi analiz i ego prilozheniya, 47:3 (2013), 37–53 | DOI
[27] Grushin V. V., “O sobstvennykh znacheniyakh finitno vozmuschennogo operatora Laplasa v beskonechnykh tsilindricheskikh oblastyakh”, Matem. zametki, 75:3 (2004), 360–371 | DOI
[28] Gadylshin R. R., “O lokalnykh vozmuscheniyakh kvantovykh volnovodov”, Teor. i matem. fiz., 145:3 (2005), 358–371 | DOI
[29] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchn. kniga, Novosibirsk, 2002
[30] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi matem. nauk, 37:4 (1982), 3–52
[31] Kuchment P., Floquet theory for partial differential equations, Birchhäuser, Basel, 1993
[32] Gelfand I. M., “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73 (1950), 1117–1120
[33] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[34] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122
[35] Nazarov S. A., “Proyavlenie prostranstvennoi struktury polya napryazhenii v okrestnosti uglovoi tochki tonkoi plastiny”, Prikl. matem. i mekhan., 55:4 (1991), 653–661
[36] Nazarov S. A., “Asimptotika reshenii i modelirovanie zadach teorii uprugosti v oblasti s bystroostsilliruyuschei granitsei”, Izv. RAN. Ser. matem., 72:3 (2008), 103–158 | DOI
[37] Kuchment P., Zeng H., “Asymptotics of spectra of Neumann Laplacian in thin domains”, Advances in Differen. Equat. Math. Phys., Contemporary Math., 387, eds. Yu. Karpeshin etc., AMS, 2003, 199–213 | DOI
[38] Nazarov S. A., “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92
[39] Nazarov S. A., “Asimptotika sobstvennykh znachenii zadachi Dirikhle na skoshennom $\mathcal{T}$-obraznom volnovode”, Zh. vychisl. matem. i matem. fiz., 54:5 (2014), 793–814 | DOI
[40] Jones D. S., “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Camb. Phil., 49 (1953), 668–684 | DOI