@article{ZVMMF_2014_54_8_a4,
author = {A. V. Sahakyan and N. N. Shavlakadze},
title = {Two methods for direct numerical integration of the {Prandtl} equation and comparative analysis between them},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1281--1288},
year = {2014},
volume = {54},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a4/}
}
TY - JOUR AU - A. V. Sahakyan AU - N. N. Shavlakadze TI - Two methods for direct numerical integration of the Prandtl equation and comparative analysis between them JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1281 EP - 1288 VL - 54 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a4/ LA - ru ID - ZVMMF_2014_54_8_a4 ER -
%0 Journal Article %A A. V. Sahakyan %A N. N. Shavlakadze %T Two methods for direct numerical integration of the Prandtl equation and comparative analysis between them %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1281-1288 %V 54 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a4/ %G ru %F ZVMMF_2014_54_8_a4
A. V. Sahakyan; N. N. Shavlakadze. Two methods for direct numerical integration of the Prandtl equation and comparative analysis between them. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1281-1288. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a4/
[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968
[2] Aleksandrov V. M., Mkhitaryan S. M., Kontaktnye zadachi dlya tel s tonkimi pokrytiyami i prosloikami, Nauka, M., 1985
[3] Vekua I. N., “Ob integro-differentsialnom uravnenii Prandtlya”, Prikl. matem. i mekhan., 9:2 (1945), 143–156
[4] Magnaradze L. G., “Ob odnom novom integralnom uravnenii teorii kryla samoleta”, Soobsch. Akad. nauk. Gruz. SSR, 3:6 (1942), 503–508
[5] Shavlakadze N. N., “Kontaktnaya zadacha izgiba plastinki s tonkoi nakladkoi”, Izv. RAN. Mekhan. tverdogo tela, 2001, no. 3, 144–155
[6] Belotserkovskii S. M., Lifanov I. K., Chislennye metody v singulyarnykh integralnykh uravneniyakh, Nauka, M., 1985
[7] Saakyan A. V., “Metod diskretnykh osobennostei v primenenii k resheniyu singulyarnykh integro-differentsialnykh uravnenii”, Tr. VI mezhd. konf. “Problemy dinamiki vzaimodeistviya deformiruemykh sred” (Armeniya, Goris, 2008), 383–387 http://vvww.mechins.sci.am/publ/avetik_sahakyan/Goris2008.doc
[8] Saakyan A. V., “Kvadraturnye formuly dlya vychisleniya integrala s peremennym verkhnim predelom”, Tr. II mezhd. konf. “Aktualnye problemy mekhaniki sploshnoi sredy” (Armeniya, Dilizhan, 2010), 107–111 http://www.mechins.sci.am/publ/avetik_sahakyan/Dilijan2010.doc
[9] Korneichuk A. A., “Kvadraturnye formuly dlya singulyarnykh integralov”, Chislennye metody resheniya differentsialnykh uravnenii i kvadraturnye formuly, Nauka, M., 1964, 64–74
[10] Saakyan A. V., “Kvadraturnye formuly naivysshei algebraicheskoi tochnosti dlya integrala tipa Koshi, kogda pokazateli vesovoi funktsii Yakobi kompleksnye”, Mekhan. tverd. tela, 2012, no. 6, 116–121
[11] Sege G., Ortogonalnye mnogochleny, Nauka, M., 1962