Two methods for direct numerical integration of the Prandtl equation and comparative analysis between them
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1281-1288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two methods based on quadrature formulas are proposed for the direct numerical integration of Prandtl’s singular integro-differential equation. In the first method, Prandtl’s equation is solved directly by applying the method of mechanical quadrature and the circulation along an airfoil section is determined. In the second method, Prandtl’s equation is rewritten for the circulation derivative, which is determined by applying mechanical quadratures, and the circulation is then reconstructed using the same quadrature formulas. Both methods are analyzed numerically and are shown to converge. Their convergence rates are nearly identical, while the second method requires much more CPU time than the first one.
@article{ZVMMF_2014_54_8_a4,
     author = {A. V. Sahakyan and N. N. Shavlakadze},
     title = {Two methods for direct numerical integration of the {Prandtl} equation and comparative analysis between them},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1281--1288},
     year = {2014},
     volume = {54},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a4/}
}
TY  - JOUR
AU  - A. V. Sahakyan
AU  - N. N. Shavlakadze
TI  - Two methods for direct numerical integration of the Prandtl equation and comparative analysis between them
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1281
EP  - 1288
VL  - 54
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a4/
LA  - ru
ID  - ZVMMF_2014_54_8_a4
ER  - 
%0 Journal Article
%A A. V. Sahakyan
%A N. N. Shavlakadze
%T Two methods for direct numerical integration of the Prandtl equation and comparative analysis between them
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1281-1288
%V 54
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a4/
%G ru
%F ZVMMF_2014_54_8_a4
A. V. Sahakyan; N. N. Shavlakadze. Two methods for direct numerical integration of the Prandtl equation and comparative analysis between them. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1281-1288. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a4/

[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968

[2] Aleksandrov V. M., Mkhitaryan S. M., Kontaktnye zadachi dlya tel s tonkimi pokrytiyami i prosloikami, Nauka, M., 1985

[3] Vekua I. N., “Ob integro-differentsialnom uravnenii Prandtlya”, Prikl. matem. i mekhan., 9:2 (1945), 143–156

[4] Magnaradze L. G., “Ob odnom novom integralnom uravnenii teorii kryla samoleta”, Soobsch. Akad. nauk. Gruz. SSR, 3:6 (1942), 503–508

[5] Shavlakadze N. N., “Kontaktnaya zadacha izgiba plastinki s tonkoi nakladkoi”, Izv. RAN. Mekhan. tverdogo tela, 2001, no. 3, 144–155

[6] Belotserkovskii S. M., Lifanov I. K., Chislennye metody v singulyarnykh integralnykh uravneniyakh, Nauka, M., 1985

[7] Saakyan A. V., “Metod diskretnykh osobennostei v primenenii k resheniyu singulyarnykh integro-differentsialnykh uravnenii”, Tr. VI mezhd. konf. “Problemy dinamiki vzaimodeistviya deformiruemykh sred” (Armeniya, Goris, 2008), 383–387 http://vvww.mechins.sci.am/publ/avetik_sahakyan/Goris2008.doc

[8] Saakyan A. V., “Kvadraturnye formuly dlya vychisleniya integrala s peremennym verkhnim predelom”, Tr. II mezhd. konf. “Aktualnye problemy mekhaniki sploshnoi sredy” (Armeniya, Dilizhan, 2010), 107–111 http://www.mechins.sci.am/publ/avetik_sahakyan/Dilijan2010.doc

[9] Korneichuk A. A., “Kvadraturnye formuly dlya singulyarnykh integralov”, Chislennye metody resheniya differentsialnykh uravnenii i kvadraturnye formuly, Nauka, M., 1964, 64–74

[10] Saakyan A. V., “Kvadraturnye formuly naivysshei algebraicheskoi tochnosti dlya integrala tipa Koshi, kogda pokazateli vesovoi funktsii Yakobi kompleksnye”, Mekhan. tverd. tela, 2012, no. 6, 116–121

[11] Sege G., Ortogonalnye mnogochleny, Nauka, M., 1962