Contrast structures for a quasilinear Sobolev-type equation with unbalanced nonlinearity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1270-1280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of a solution to a generalized Kolmogorov–Petrovskii–Piskunov equation is proved and its asymptotic expansion of the internal transition layer type is constructed. The convergence of the asymptotics is proved by applying the asymptotic comparison principle developed for a new class of problems.
@article{ZVMMF_2014_54_8_a3,
     author = {A. A. Bykov and N. N. Nefedov and A. S. Sharlo},
     title = {Contrast structures for a quasilinear {Sobolev-type} equation with unbalanced nonlinearity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1270--1280},
     year = {2014},
     volume = {54},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a3/}
}
TY  - JOUR
AU  - A. A. Bykov
AU  - N. N. Nefedov
AU  - A. S. Sharlo
TI  - Contrast structures for a quasilinear Sobolev-type equation with unbalanced nonlinearity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1270
EP  - 1280
VL  - 54
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a3/
LA  - ru
ID  - ZVMMF_2014_54_8_a3
ER  - 
%0 Journal Article
%A A. A. Bykov
%A N. N. Nefedov
%A A. S. Sharlo
%T Contrast structures for a quasilinear Sobolev-type equation with unbalanced nonlinearity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1270-1280
%V 54
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a3/
%G ru
%F ZVMMF_2014_54_8_a3
A. A. Bykov; N. N. Nefedov; A. S. Sharlo. Contrast structures for a quasilinear Sobolev-type equation with unbalanced nonlinearity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1270-1280. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a3/

[1] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[2] Korpusov M. O., Sveshnikov A. G., “O “razrushenii” za konechnoe vremya reshenii nachalno-kraevykh zadach dlya uravnenii psevdoparabolicheskogo tipa s psevdolaplassianom”, Zh. vychisl. matem. i matem. fiz., 45:2 (2005), 272–286

[3] Kozhanov A. I., “Nachalno-kraevaya zadacha dlya uravnenii tipa obobschennogo uravneniya Bussineska s nelineinym istochnikom”, Matem. zametki, 65:1 (1999), 70–75 | DOI

[4] Bozhevolnov Yu. V., Nefedov N. N., “Dvizhenie fronta v parabolicheskoi zadache reaktsiya-diffuziya”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 276–285

[5] Benguria R. D., Depassier M. C., “On the transition from pulled to pushed monotonic fronts of the extended Fisher–Kolmogorov equation”, Sci. Direct. Physica A, 356 (2005), 61–65

[6] Nefedov N. N., “Nestatsionarnye kontrastnye struktury v sisteme reaktsiya-diffuziya”, Matem. modelirovanie, 4:8 (1992), 58–65

[7] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundamentalnaya i prikl. matem., 4:3 (1998), 799–851

[8] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Singulyarno vozmuschennye zadachi s pogranichnymi i vnutrennimi sloyami”, Tr. MIAN, 268, 2010, 268–283