Computer difference scheme for a singularly perturbed convection-diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1256-1269 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem for a singularly perturbed ordinary differential convection-diffusion equation with a perturbation parameter $\varepsilon$ (that takes arbitrary values from the half-open interval $(0, 1]$) is considered. For this problem, an approach to the construction of a numerical method based on a standard difference scheme on uniform meshes is developed in the case when the data of the grid problem include perturbations and additional perturbations are introduced in the course of the computations on a computer. In the absence of perturbations, the standard difference scheme converges at an $O(\delta_{st})$ rate, where $\delta_{st}=(\varepsilon+N^{-1})^{-1}N^{-1}$ and $N+1$ is the number of grid nodes; the scheme is not $\varepsilon$-uniformly well conditioned or stable to perturbations of the data. Even if the convergence of the standard scheme is theoretically proved, the actual accuracy of the computed solution in the presence of perturbations degrades with decreasing $\varepsilon$ down to its complete loss for small $\varepsilon$ (namely, for $\varepsilon=O(\delta^{-2}\operatorname{max}_{i,j}|\delta a_i^j|+\delta^{-1}\operatorname{max}_{i,j}|\delta b_i^j|$), where $\delta=\delta_{st}$ and $\delta a_i^j$, $\delta b_i^j$ are the perturbations in the coefficients multiplying the second and first derivatives). For the boundary value problem, we construct a computer difference scheme, i.e., a computing system that consists of a standard scheme on a uniform mesh in the presence of controlled perturbations in the grid problem data and a hypothetical computer with controlled computer perturbations. The conditions on admissible perturbations in the grid problem data and on admissible computer perturbations are obtained under which the computer difference scheme converges in the maximum norm for $\varepsilon\in (0, 1]$ at the same rate as the standard scheme in the absence of perturbations.
@article{ZVMMF_2014_54_8_a2,
     author = {G. I. Shishkin},
     title = {Computer difference scheme for a singularly perturbed convection-diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1256--1269},
     year = {2014},
     volume = {54},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a2/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Computer difference scheme for a singularly perturbed convection-diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1256
EP  - 1269
VL  - 54
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a2/
LA  - ru
ID  - ZVMMF_2014_54_8_a2
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Computer difference scheme for a singularly perturbed convection-diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1256-1269
%V 54
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a2/
%G ru
%F ZVMMF_2014_54_8_a2
G. I. Shishkin. Computer difference scheme for a singularly perturbed convection-diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1256-1269. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a2/

[1] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[2] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary laers, Chapman and Hall/CRC, Boca Raton, 2000

[3] Roos H.-G., Stynes M., Tobiska L., Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 2008

[4] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 140, CRC Press, Boca Raton, 2009

[5] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, Revised Edition, World Scientific, Singapore, 2012

[6] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989

[7] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978

[8] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979

[9] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989

[10] Kalitkin H. H., Chislennye metody, Nauka, M., 1978

[11] Wesseling P., Principles of computational fluid dynamics, Springer-Verlag, Berlin, 2001

[12] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974

[13] Shishkin G. I., “Ustoichivost standartnoi skhemy dlya singulyarno vozmuschennogo uravneniya konvektsii-diffuzii”, Dokl. AN, 448:6 (2013), 648–650 | DOI

[14] Shishkin G. I., “Stability of difference schemes on uniform grids for a singularly perturbed convection-diffusion equation”, Numerical Mathematics and advanced Applications 2011, The 9th European Conference on Numerical Mathematics and Advanced Applications (Leicester, September 2011), Springer-Verlag, Berlin, 2013, 293–302 | DOI

[15] Shishkin G. I., “Obuslovlennost raznostnoi skhemy metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo uravneniya konvektsii-diffuzii”, Tr. IMM UrO RAN, 18, no. 2, 2012, 291–304

[16] Shishkin G. I., “Stability of difference schemes on uniform girds to perturbations of the data for a singularly perturbed convection-diffusion equation”, Russian J. Numer. Analysis and Math. Modelling, 28:4 (2013), 381–417 | DOI

[17] Shishkin G. I., “Obuslovlennost i ustoichivost raznostnykh skhem na ravnomernykh setkakh dlya singulyarno vozmuschennogo parabolicheskogo uravneniya konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 53:4 (2013), 575–599 | DOI

[18] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973

[19] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya bazovykh znanii, M., 2001