Sufficient conditions for the determination and use of data in the same granular parallel computation process
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1356-1367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Parallel algorithms for distributed memory computers should be granular, in which case the set of algorithmic operations is split into sets known as computation grains, or tiles. Conditions are proposed and proved under which data is used in the same granular computation process where it was determined. These conditions can be used to estimate the number of communication operations in alternative versions of parallel algorithms.
@article{ZVMMF_2014_54_8_a10,
     author = {N. A. Likhoded},
     title = {Sufficient conditions for the determination and use of data in the same granular parallel computation process},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1356--1367},
     year = {2014},
     volume = {54},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a10/}
}
TY  - JOUR
AU  - N. A. Likhoded
TI  - Sufficient conditions for the determination and use of data in the same granular parallel computation process
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1356
EP  - 1367
VL  - 54
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a10/
LA  - ru
ID  - ZVMMF_2014_54_8_a10
ER  - 
%0 Journal Article
%A N. A. Likhoded
%T Sufficient conditions for the determination and use of data in the same granular parallel computation process
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1356-1367
%V 54
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a10/
%G ru
%F ZVMMF_2014_54_8_a10
N. A. Likhoded. Sufficient conditions for the determination and use of data in the same granular parallel computation process. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1356-1367. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a10/

[1] Voevodin V. V., Voevodin Vl. V., Parallelnye vychisleniya, BKhV-Peterburg, SPb., 2002

[2] Lim A. W., Lam M. S., “Maximizing parallelism and minimizing synchronization with affine partitions”, Parallel Computing, 24:3–4 (1998), 445–475 | DOI

[3] Likhoded N. A., “Otobrazhenie affinnykh gnezd tsiklov na nezavisimye protsessory”, Kibernetika i sistemnyi analiz, 2003, no. 3, 169–179

[4] Dion M., Robert Y., “Mapping affine loop nests”, Parallel Computing, 22:10 (1996), 1373–1397 | DOI

[5] Likhoded N. A., “Raspredelenie operatsii i massivov dannykh mezhdu protsessorami”, Programmirovanie, 2003, no. 3, 73–80

[6] Adutskevich E. V., Likhoded N. A., “Soglasovannoe poluchenie konveiernogo parallelizma i raspredeleniya operatsii i dannykh mezhdu protsessorami”, Programmirovanie, 2006, no. 3, 54–65

[7] Garcia J., Ayguade E., Labarta J., “A framework for integrating data alignment, distribution, and redistribution in distributed memory multiprocessors”, IEEE Transactions on parallel and distributed systems, 12:4 (2001), 416–430 | DOI

[8] Dion M., Randriamaro S., Robert Y., Compiling affine nested loops: how to optimize the residual communications after the alignment phase?, J. Parallel and Distrib. Computing, 30:2 (1996), 176–187 | DOI

[9] Pan L., Xue J., Lai M. K., Dillencourt M. V., Bic L. F., “Toward automatic data distribution for migrating computations”, Int. Conf. on Parallel Processing (Xian, China, 2007)

[10] Adutskevich E. V., Likhoded N. A., Sikorskii A. O., “K rasparallelivaniyu posledovatelnykh programm: raspredelenie massivov mezhdu protsessorami i strukturizatsiya kommunikatsii”, Kibernetika i sistemnyi analiz, 2012, no. 1, 144–163

[11] Frolov A. V., “Nakhozhdenie i ispolzovanie orientirovannykh razrezov realnykh grafov algoritmov”, Programmirovanie, 1997, no. 4, 71–80

[12] Lim A. W., Liao S.-W., Lam M. S., “Blocking and array contraction across arbitrary nested loops using affine partitioning”, Proc. the ACM SIGPLAN Symposium on Principles and Practice of Programming Languages (2001), 103–112

[13] Xue J., Cai W., “Time-minimal tiling when rise is larger than zero”, Parallel Computing, 28:5 (2002), 915–939 | DOI

[14] Kim D., Rajopadhye S., Parameterized tiling for imperfectly nested loops, Technical Report CS-09-101, Colorado State University, Department of Computer Science, February 2009

[15] Bondhugula U., Baskaran M., Krishnamoorthy S., Ramanujam J., Rountev A., Sadayappan P., “Automatic transformations for communication-minimized parallelization and locality optimization in the polyhedral model”, Lecture Notes in Comput. Sci., 4959, 2008, 132–146 | DOI

[16] Bondhugula U., Ramanujam J., Sadayappan P., “PLuTo: a practical and fully automatic polyhedral program optimization system”, Proc. the ACM SIGPLAN 2008 conference on programming language design and implementation

[17] Tavarageri S., Hartono A., Baskaran M., Pouchet L.-N., Ramanujam J., Sadayappan P., “Parametric tiling of affme loop nests”, Proc. the 15th Workshop on Compilers for Parallel Computers (Vienna, Austria, July 2010)

[18] Hartono A., Baskaran M., Ramanujam J., Sadayappan P., “DynTile: Parametric tiled loop generation for parallel execution on multicore processors”, Proc. 24th Internat. Parallel and Distributed Processing Symposium (Atlanta, April 2010), 1–12

[19] Gergel V. P., Strongin R. G., Osnovy parallelnykh vychislenii dlya mnogoprotsessornykh vychislitelnykh sistem, NNGU im. N. I. Lobachevskogo, Nizhnii Novgorod, 2003

[20] Likhoded N. A., Tolstikov A. A., “Parallelnye posledovatelnosti zernistykh vychislenii”, Dokl. NAN Belarusi, 2010, no. 4, 36–41

[21] PIP: the parametric integer programming library, http://www.piplib.org

[22] Polylib: a library of polyhedral functions, http://icps.u-strasbg.fr/polylib/

[23] LooPo: Loop parallelization in the polytope model, http://www.fmi.uni-passau.de/loopo

[24] Likhoded N. A., “Kharakteristika lokalnosti parallelnykh realizatsii mnogomernykh tsiklov”, Dokl. NAN Belarusi, 2010, no. 1, 26–32

[25] Voevodin V. V., “Massivnyi parallelizm i dekompozitsiya algoritmov”, Zh. vychisl. matem. i matem. fiz., 35:6 (1995), 988–996

[26] Bakhanovich S. V., Zayats G. M., Likhoded N. A., Tsurko V. A., “Parallelnaya realizatsiya lokalno-odnomernogo metoda chislennogo resheniya dvumernykh parabolicheskikh uravnenii”, Informatika, 2010, no. 4, 72–80