@article{ZVMMF_2014_54_8_a10,
author = {N. A. Likhoded},
title = {Sufficient conditions for the determination and use of data in the same granular parallel computation process},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1356--1367},
year = {2014},
volume = {54},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a10/}
}
TY - JOUR AU - N. A. Likhoded TI - Sufficient conditions for the determination and use of data in the same granular parallel computation process JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1356 EP - 1367 VL - 54 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a10/ LA - ru ID - ZVMMF_2014_54_8_a10 ER -
%0 Journal Article %A N. A. Likhoded %T Sufficient conditions for the determination and use of data in the same granular parallel computation process %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1356-1367 %V 54 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a10/ %G ru %F ZVMMF_2014_54_8_a10
N. A. Likhoded. Sufficient conditions for the determination and use of data in the same granular parallel computation process. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1356-1367. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a10/
[1] Voevodin V. V., Voevodin Vl. V., Parallelnye vychisleniya, BKhV-Peterburg, SPb., 2002
[2] Lim A. W., Lam M. S., “Maximizing parallelism and minimizing synchronization with affine partitions”, Parallel Computing, 24:3–4 (1998), 445–475 | DOI
[3] Likhoded N. A., “Otobrazhenie affinnykh gnezd tsiklov na nezavisimye protsessory”, Kibernetika i sistemnyi analiz, 2003, no. 3, 169–179
[4] Dion M., Robert Y., “Mapping affine loop nests”, Parallel Computing, 22:10 (1996), 1373–1397 | DOI
[5] Likhoded N. A., “Raspredelenie operatsii i massivov dannykh mezhdu protsessorami”, Programmirovanie, 2003, no. 3, 73–80
[6] Adutskevich E. V., Likhoded N. A., “Soglasovannoe poluchenie konveiernogo parallelizma i raspredeleniya operatsii i dannykh mezhdu protsessorami”, Programmirovanie, 2006, no. 3, 54–65
[7] Garcia J., Ayguade E., Labarta J., “A framework for integrating data alignment, distribution, and redistribution in distributed memory multiprocessors”, IEEE Transactions on parallel and distributed systems, 12:4 (2001), 416–430 | DOI
[8] Dion M., Randriamaro S., Robert Y., Compiling affine nested loops: how to optimize the residual communications after the alignment phase?, J. Parallel and Distrib. Computing, 30:2 (1996), 176–187 | DOI
[9] Pan L., Xue J., Lai M. K., Dillencourt M. V., Bic L. F., “Toward automatic data distribution for migrating computations”, Int. Conf. on Parallel Processing (Xian, China, 2007)
[10] Adutskevich E. V., Likhoded N. A., Sikorskii A. O., “K rasparallelivaniyu posledovatelnykh programm: raspredelenie massivov mezhdu protsessorami i strukturizatsiya kommunikatsii”, Kibernetika i sistemnyi analiz, 2012, no. 1, 144–163
[11] Frolov A. V., “Nakhozhdenie i ispolzovanie orientirovannykh razrezov realnykh grafov algoritmov”, Programmirovanie, 1997, no. 4, 71–80
[12] Lim A. W., Liao S.-W., Lam M. S., “Blocking and array contraction across arbitrary nested loops using affine partitioning”, Proc. the ACM SIGPLAN Symposium on Principles and Practice of Programming Languages (2001), 103–112
[13] Xue J., Cai W., “Time-minimal tiling when rise is larger than zero”, Parallel Computing, 28:5 (2002), 915–939 | DOI
[14] Kim D., Rajopadhye S., Parameterized tiling for imperfectly nested loops, Technical Report CS-09-101, Colorado State University, Department of Computer Science, February 2009
[15] Bondhugula U., Baskaran M., Krishnamoorthy S., Ramanujam J., Rountev A., Sadayappan P., “Automatic transformations for communication-minimized parallelization and locality optimization in the polyhedral model”, Lecture Notes in Comput. Sci., 4959, 2008, 132–146 | DOI
[16] Bondhugula U., Ramanujam J., Sadayappan P., “PLuTo: a practical and fully automatic polyhedral program optimization system”, Proc. the ACM SIGPLAN 2008 conference on programming language design and implementation
[17] Tavarageri S., Hartono A., Baskaran M., Pouchet L.-N., Ramanujam J., Sadayappan P., “Parametric tiling of affme loop nests”, Proc. the 15th Workshop on Compilers for Parallel Computers (Vienna, Austria, July 2010)
[18] Hartono A., Baskaran M., Ramanujam J., Sadayappan P., “DynTile: Parametric tiled loop generation for parallel execution on multicore processors”, Proc. 24th Internat. Parallel and Distributed Processing Symposium (Atlanta, April 2010), 1–12
[19] Gergel V. P., Strongin R. G., Osnovy parallelnykh vychislenii dlya mnogoprotsessornykh vychislitelnykh sistem, NNGU im. N. I. Lobachevskogo, Nizhnii Novgorod, 2003
[20] Likhoded N. A., Tolstikov A. A., “Parallelnye posledovatelnosti zernistykh vychislenii”, Dokl. NAN Belarusi, 2010, no. 4, 36–41
[21] PIP: the parametric integer programming library, http://www.piplib.org
[22] Polylib: a library of polyhedral functions, http://icps.u-strasbg.fr/polylib/
[23] LooPo: Loop parallelization in the polytope model, http://www.fmi.uni-passau.de/loopo
[24] Likhoded N. A., “Kharakteristika lokalnosti parallelnykh realizatsii mnogomernykh tsiklov”, Dokl. NAN Belarusi, 2010, no. 1, 26–32
[25] Voevodin V. V., “Massivnyi parallelizm i dekompozitsiya algoritmov”, Zh. vychisl. matem. i matem. fiz., 35:6 (1995), 988–996
[26] Bakhanovich S. V., Zayats G. M., Likhoded N. A., Tsurko V. A., “Parallelnaya realizatsiya lokalno-odnomernogo metoda chislennogo resheniya dvumernykh parabolicheskikh uravnenii”, Informatika, 2010, no. 4, 72–80