@article{ZVMMF_2014_54_8_a0,
author = {G. K. Kamenev},
title = {Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1235--1248},
year = {2014},
volume = {54},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a0/}
}
TY - JOUR AU - G. K. Kamenev TI - Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1235 EP - 1248 VL - 54 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a0/ LA - ru ID - ZVMMF_2014_54_8_a0 ER -
%0 Journal Article %A G. K. Kamenev %T Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1235-1248 %V 54 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a0/ %G ru %F ZVMMF_2014_54_8_a0
G. K. Kamenev. Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 8, pp. 1235-1248. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_8_a0/
[1] Gruber P. M., “Aspects of approximation of convex bodies”, Handbook of Convex Geometry, Ch. 1.10, eds. P. M. Gruber, J. M. Wills, Elsevier Sci. Publishers B. V., 1993, 321–345
[2] Bronshtein E. M., “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Geometriya, SMFN, 22, M., 2007, 5–37
[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969
[4] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of pareto frontier, Appl. Optimization, 89, Kluwer, London, 2004, 310 pp. | DOI
[5] Böröszky K. (Jr.), “Polytopal approximation bounding the number of $k$-faces”, J. of Approx. Theory, 102 (2000), 263–285 | DOI
[6] Böröczky K. (Jr.), Fodor F., Vigh V., “Approximating 3-dimensional convex bodies by polytopes with a restricted number of edges”, Beit. Alg. Geom., 49 (2008), 177–193
[7] Bushenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 1982
[8] Kamenev G. K., “Approksimatsiya vpolne ogranichennykh mnozhestv metodom Glubokikh Yam”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1751–1760
[9] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2007, 230 pp.
[10] Efremov R. V., Kamenev G. K., “Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems”, Ann. Oper. Res., 166 (2009), 271–279 | DOI
[11] Efremov R. V., Kamenev G. K., “Ob optimalnom poryadke rosta chisla vershin i gipergranei v klasse khausdorfovykh metodov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1018–1031
[12] Kamenev G. K., “Poliedralnaya approksimatsiya shara Metodom Glubokikh Yam s optimalnym poryadkom rosta moschnosti grannoi struktury”, Trudy Mezhdunar. konf. “Chislennaya geometriya, postroenie raschetnykh setok i vysokoproizvoditelnye vychisleniya (NUMGRID'2010)” (Moskva, 11–13 oktyabrya 2010 g.), Izd. Folium, M., 2010, 47–52
[13] Kamenev G. K., Lotov A. V., Maiskaya T. S., “Postroenie suboptimalnykh pokrytii mnogomernoi edinichnoi sfery”, Dokl. AN, 444:2 (2012), 153–155
[14] Kamenev G. K., Lotov A. V., Maiskaya T. S., “Iterativnyi metod postroeniya pokrytii mnogomernoi edinichnoi sfery”, Zh. vychisl. matem. i matem. fiz., 53:2 (2013), 181–194 | DOI
[15] Brënsted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988
[16] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v. 1, Mir, M., 1990
[17] Kolmogorov A. N., Tikhomirov V. M., “$\mathcal{E}$-entropiya i $\mathcal{E}$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86
[18] Rodzhers Ch. A., Ukladki i pokrytiya, Mir, M., 1968
[19] Böröczky K. (Jr.), Finite Packing and covering, Cambridge University Press, 2004
[20] Schneider R., “Zur optimalen approximation konvexer hyperflachen durch polyeder”, Math. Ann., 256:3 (1981), 289–301 | DOI
[21] Yaglom I. M., “Nekotorye rezultaty, kasayuschiesya raspolozhenii v $n$-mernom prostranstve”: Tot L. F., Raspolozheniya na ploskosti, na sfere i v prostranstve, Fizmatlit, M., 1958
[22] Grünbaum B., Convex Polytopes, Graduate Texts in Mathematics, 221, Second Edition, Springer, Berlin, 2003 | DOI
[23] McMullen P., Shephard G. C., Convex Polytopes and the upper bound conjecture, Cambridge Cambridge University Press, 1971
[24] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152
[25] Graham R. L., Lubachevsky B. D., Nurmela K. J., Östergård P. R. J., “Dense packings of congruent circles in a circle”, Discrete Math., 181:1–3 (1998), 139–154 | DOI
[26] Pfoertner H., Densest packings of $n$ equal spheres in a sphere of radius 1. Largest Possible Radii, , 2008 http://www.randomwalk.de/sphere/insphr/spisbest.txt
[27] Kabatyanskii G. A., Levenshtein V. I., “O granitsakh dlya upakovok na sfere i v prostranstve”, Probl. peredachi inform., 14:1 (1978), 3–25
[28] McMullen P., “The maximum numbers of faces of convex polytope”, Math., 17 (1970), 179–184
[29] Seidel R., “The upper bound theorem for polytopes: an easy proof of its asymptotic version”, Comput. Geometry: Theory and Applications, 5 (1995), 115–116 | DOI
[30] Ziegler G. M., Lectures on Polytopes, Graduate texts in mathematics, 152, Revised First Edition, Springer, Berlin, 1995 | DOI