Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1203-1217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A combined method blending the advantages of smoothed particles hydrodynamics (SPH) and the grid-characteristic method (GCM) is proposed for simulating elastoplastic bodies. Various grid methods, including the GCM, have long been used for the numerical simulation of elastoplastic media. This method applies to the simulation of wave processes in elastic media, including elastic impacts, in which case an advantage is the use of moving tetrahedral meshes. Additionally, fracture processes can be simulated by applying various fracture criteria. However, this is a technically complicated task with the accuracy of the results degrading due to the continual updating of the grid. A more suitable approach to the simulation of processes involving substantial fractures and deformations is based on SPH, which is a meshless method. However, this method also has shortcomings: it produces spurious modes, and the simulation of oscillations requires particle refinement. Thus, two families of methods are available that are optimal as applied to two different groups of problems. However, a realworld problem can frequently be a mixed one, which requires a substantial tradeoff in the numerical methods applied. Aimed at solving such problems, a combined GCM-SPH method is developed that blends the advantages of two constituting techniques and partially eliminates their shortcomings.
@article{ZVMMF_2014_54_7_a9,
     author = {A. V. Vasyukov and A. S. Ermakov and I. B. Petrov and A. P. Potapov and A. V. Favorskaya and A. V. Shevtsov},
     title = {Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1203--1217},
     year = {2014},
     volume = {54},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a9/}
}
TY  - JOUR
AU  - A. V. Vasyukov
AU  - A. S. Ermakov
AU  - I. B. Petrov
AU  - A. P. Potapov
AU  - A. V. Favorskaya
AU  - A. V. Shevtsov
TI  - Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1203
EP  - 1217
VL  - 54
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a9/
LA  - ru
ID  - ZVMMF_2014_54_7_a9
ER  - 
%0 Journal Article
%A A. V. Vasyukov
%A A. S. Ermakov
%A I. B. Petrov
%A A. P. Potapov
%A A. V. Favorskaya
%A A. V. Shevtsov
%T Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1203-1217
%V 54
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a9/
%G ru
%F ZVMMF_2014_54_7_a9
A. V. Vasyukov; A. S. Ermakov; I. B. Petrov; A. P. Potapov; A. V. Favorskaya; A. V. Shevtsov. Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1203-1217. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a9/

[1] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[2] Petrov I. B., Kholodov A. S., “Chislennoe issledovanie nekotorykh dinamicheskikh zadach mekhaniki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Zh. vychisl. matem. i matem. fiz., 24:5 (1984), 722–739

[3] Kholodov A. S., “Chislennye metody resheniya uravnenii i sistem giperbolicheskogo tipa”, Entsiklopediya nizkotemperaturnoi plazmy, Ch. 2, v. VII-I, 2008, 141–174

[4] Ivanov V. D., Kondaurov V. I., Petrov I. B., Kholodov A. S., “Raschet dinamicheskogo deformirovaniya i razrusheniya uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami”, Matem. modelirovanie, 2:1 (1990), 11–29

[5] Petrov I. B., Kholodov A. S., “O regulyarizatsii razryvnykh chislennykh reshenii uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 24:8 (1984), 1172–1188

[6] Petrov I. B., Tormasov A. G., Kholodov A. S., “Ob ispolzovanii gibridizirovannykh setochno-kharakteristicheskikh skhem dlya chislennogo resheniya trekhmernykh zadach dinamiki deformiruemogo tverdogo tela”, Zh. vychisl. matem. i matem. fiz., 30:8 (1990), 1237–1244

[7] Petrov I. B., Chelnokov F. B., “Chislennoe issledovanie volnovykh protsessov i protsessov razrusheniya v mnogosloinykh pregradakh”, Zh. vychisl. matem. i matem. fiz., 43:10 (2003), 1562–1579

[8] Agapov P. I., Belotserkovskii O. M., Petrov I. B., “Chislennoe modelirovanie posledstvii mekhanicheskogo vozdeistviya na mozg cheloveka pri cherepno-mozgovoi travme”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1711–1720

[9] Matyushev N. G., Petrov I. B., “Matematicheskoe modelirovanie deformatsionnykh i volnovykh protsessov v mnogosloinykh konstruktsiyakh”, Zh. vychisl. matem. i matem. fiz., 49:9 (2009), 1690–1696

[10] Kvasov I. E., Petrov I. B., “Chislennoe modelirovanie volnovykh protsessov v geologicheskikh sredakh v zadachakh seismorazvedki vysokoproizvoditelnykh EVM”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 330–341

[11] Fomin V. M., Gulidov A. I., Sapozhnikov G. A. i dr., Vysokoskorostnoe vzaimodeistvie tel, Izd. SO RAN, Novosibirsk, 1999

[12] Uilkins M., “Raschet uprugo-plasticheskikh techenii”, Vychislitelnye metody v gidrodinamike, 1967, 212–263

[13] Kukudzhanov V. N., “Chislennoe modelirovanie dinamicheskikh protsessov deformirovaniya i razrusheniya uprugoplasticheskikh sred”, Uspekhi mekhaniki, 8:4 (1985), 21–64

[14] Kanel G. I., Fortov V. E., “Mekhanicheskie svoistva kondensirovannykh sred pri intensivnykh impulsnykh vozdeistviyakh”, Uspekhi mekhaniki, 10:3 (1987), 3–82

[15] Odintsov V. A., “Mekhanizm razrusheniya tsilindrov”, Voprosy fiziki vzryva i udara, 1, MVTU im. N. E. Baumana, 1980, 22–70

[16] Sagomonyan A. Ya., Analiticheskoe reshenie zadach pronikaniya, Izd-vo Mosk. un-ta, M., 1974

[17] Belov N. N., Korneev A. I., Nikolaev A. P., “Chislennyi analiz razrusheniya v plitakh pod deistviem impulsnykh nagruzok”, Prikl. mekhan. i tekhn. fiz., 1985, no. 3, 132–136

[18] Bazhenov V. G., Lomunov V. K., Chekmarev D. T., “Chislennoe modelirovanie nelineinykh zadach dinamiki uprugoplasticheskikh konstruktsii”, Matem. modelirovanie, 18:1 (2006), 10–16

[19] Babkin A. V., Selivanov V. V. i dr., Fizika vzryva, V 2 t., v. 1, ed. L. P. Orlenko, Fizmatlit, M., 2002

[20] Libersky L. D., Petschek A. G., “Smoothed particles hydrodynamics with strength of materials”, Proc. of The Next Free Language Conference (NY, 1991), 248–257

[21] Randles P. W., Libersky L. D., Carney T. C., Sandstrom F. W., “SPH simulation of fragmentation in the MK82 bomb”, AIP Conference Proc., 370 (1996), 331–334 | DOI

[22] Liu G. R., Liu M. B., Smoothed Particles Hydrodynamics, World Scientific Publishing Co. Pte. Ltd., Singapore, 2003

[23] Medin S. A., Parshikov A. N., “Razvitie metoda SPH i ego primenenie v zadachakh gidrodinamiki kondensirovannykh sred”, Teplofizika vysokikh temperatur, 48:6 (2010), 973–980

[24] Monaghan J. J., “An introduction to SPH”, Computer Physics Communications, 48 (1988), 89–96 | DOI

[25] Monaghan J. J., “SPH without a tensile instability”, J. Comput. Phys., 2000, 290–311 | DOI

[26] Gilmanov A. N., Kulachkova N. A., “Chislennoe issledovanie dvumernykh techenii gaza so skachkami metodom TVD na fizicheski adaptivnykh setkakh”, Matem. modelirovanie, 7:3 (1995), 97–106

[27] Shevtsov A. V., Chernikov D. V., “Kombinirovanie metoda sglazhennykh chastits i setochno-kharakteristicheskogo metoda”, Tr. 55-i nauchnoi konferentsii MFTI (2012), 111–112

[28] Shevtsov A. V., Favorskaya A. V., Potapov A. P., Vasyukov A. V., “Trekhmernyi kombinirovannyi metod chislennogo modelirovaniya uprugoplasticheskikh tel”, Matematicheskie i informatsionnye modeli upravleniya, Sbornik nauchnykh trudov MFTI, 2013, 39–44

[29] Potapov A. P., Roiz S. I., Petrov I. B., “Modelirovanie volnovykh protsessov metodom sglazhennykh chastits (SPH)”, Matem. modelirovanie, 21:7 (2009), 20–28

[30] Novatskii V., Teoriya uprugosti, Mir, M., 1975

[31] Novatskii V. K., Volnovye zadachi teorii plastichnosti, Mir, M., 1978

[32] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971