Numerical simulation of multiply connected axisymmetric discontinuous incompressible potential flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1194-1202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The ascend and evolution of an axisymmetric gas bubble are studied numerically using an inviscid incompressible potential flow model. The volume of the gas bubble varies adiabatically. The transition from a simply connected bubble to a doubly connected toroidal one and its interaction with the free surface are simulated. The change in connectedness is accompanied by a nonzero velocity circulation and a discontinuous velocity potential occurring over an arbitrary toroidal liquid surface enclosing the bubble.
@article{ZVMMF_2014_54_7_a8,
     author = {A. M. Bubenchikov and V. A. Korobitsyn and D. V. Korobitsyn and P. P. Kotov and Yu. I. Shokin},
     title = {Numerical simulation of multiply connected axisymmetric discontinuous incompressible potential flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1194--1202},
     year = {2014},
     volume = {54},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a8/}
}
TY  - JOUR
AU  - A. M. Bubenchikov
AU  - V. A. Korobitsyn
AU  - D. V. Korobitsyn
AU  - P. P. Kotov
AU  - Yu. I. Shokin
TI  - Numerical simulation of multiply connected axisymmetric discontinuous incompressible potential flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1194
EP  - 1202
VL  - 54
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a8/
LA  - ru
ID  - ZVMMF_2014_54_7_a8
ER  - 
%0 Journal Article
%A A. M. Bubenchikov
%A V. A. Korobitsyn
%A D. V. Korobitsyn
%A P. P. Kotov
%A Yu. I. Shokin
%T Numerical simulation of multiply connected axisymmetric discontinuous incompressible potential flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1194-1202
%V 54
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a8/
%G ru
%F ZVMMF_2014_54_7_a8
A. M. Bubenchikov; V. A. Korobitsyn; D. V. Korobitsyn; P. P. Kotov; Yu. I. Shokin. Numerical simulation of multiply connected axisymmetric discontinuous incompressible potential flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1194-1202. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a8/

[1] Ovsyannikov L. V., “O vsplyvanii puzyrya”, Nekotorye problemy matem. i mekhan., Nauka, L., 1970

[2] Lavrentev M. A., Shabat B. V., Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1973

[3] Voinov O. V., Voinov V. V., “Chislennyi metod rascheta nestatsionarnykh dvizhenii idealnoi neszhimaemoi zhidkosti so svobodnymi poverkhnostyami”, Dokl. AN SSSR, 221:3 (1975), 559–562

[4] Prosperetti A., Crum L. A., Commander K. W., “Nonlinear bubble dynamics”, J. Accoust Soc. Amer., 83:2 (1998), 502–514 | DOI

[5] Aganin A. A., Kosolapova L. A., Malakhov V. G., “Nelineinye radialnye kolebaniya i prostranstvennye peremescheniya nesfericheskogo gazovogo puzyrka v zhidkosti”, Matem. modelirovanie, 23:5 (2011), 56–70

[6] Gudov A. M., “Chislennoe issledovanie yavlenii na poverkhnosti vody pri skhlopyvanii gazovoi polosti”, Vychisl. tekhnologii, 2:4 (1997), 49–59

[7] Kedrinskii V. K., “O podvodnom vzryve vblizi svobodnoi poverkhnosti”, Dokl. AN SSSR, 212:2 (1973), 324–326

[8] Korobitsyn V. A., “Chislennoe modelirovanie osesimmetrichnykh potentsialnykh techenii neszhimaemoi zhidkosti”, Matem. modelirovanie, 3:10 (1991), 42–49

[9] Korobitsyn V. A., Pegov V. I., “Chislennoe issledovanie evolyutsii granitsy razdela dvukh zhidkostei”, Izv. RAN. Mekhan. zhidkosti i gaza, 1993, no. 5, 128–133

[10] Korobitsyn V. A., “Bazisnyi raznostnyi metod dlya ortogonalnykh sistem na poverkhnosti”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1308–1316

[11] Korobitsyn V. A., “Chislennoe modelirovanie mnogosvyaznykh techenii neszhimaemoi zhidkosti”, IX Mezhdunar. konf. “Matematicheskie i informatsionnye tekhnologii MIT 2011” (Vrnjacka Banja and Budva, August 27–September 5, 2011)

[12] Korobitsyn V. A., “Kovariantnye preobrazovaniya bazisnykh differentsialno-raznostnykh skhem na ploskosti”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 2033–2041

[13] Beizel S. A., Chubarov L. B., Dutykh D. et al., “Simulation of surface waves generated by an underwater landslide in a bounded reservoir. Citation Information”, Russian J. Numerical Analys. Math. Model., 27:6 (2013), 539–558

[14] Lipnikov K., Manzini G., Shashkov M., “Mimetic finite difference method”, J. Comput. Phys. B, 257 (2014), 1163–1227 | DOI

[15] Gasilov V. A., Goloviznin V. M., Taran M. D. i dr., O chislennom modelirovanii relei-teilorovskoi neustoichivosti v neszhimaemoi zhidkosti, Preprint No 70, IPM, M., 1979, 59 pp.

[16] Knepp R., Deili Dzh., Khemmit F., Kavitatsiya, Mir, M., 1974

[17] Prosperetti A., Jacobs J. W., “A numerical method for potential flows with a free surface”, J. Comput. Phys., 51:3 (1983), 365–386 | DOI

[18] Pukhnachev V. V., Solonnikov V. A., “K voprosu o dinamicheskom kraevom ugle”, Prikl. matem. i mekhan., 46:6 (1982)

[19] Hirt C. W., Cook J. L., Butler T. D., “A Lagrangian method for calculating the dynamics of an insompressible fluid with free surface”, J. Comput. Phys., 5:2 (1970), 103–124 | DOI