Construction and study of high-order accurate schemes for solving the one-dimensional heat equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1136-1148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of undetermined coefficients on multipoint stencils with two time levels was used to construct compact difference schemes of $O(\tau^3,h^6)$ accuracy intended for solving boundary value problems for the one-dimensional heat equation. The schemes were examined for von Neumann stability, and numerical experiments were conducted on a sequence of grids with mesh sizes tending to zero. One of the schemes was proved to be absolutely stable. It was shown that, for smooth solutions, the high order of convergence of the numerical solution agrees with the order of accuracy; moreover, solutions accurate up to $\sim10^{-12}$ are obtained on grids with spatial mesh sizes of $\sim10^{-2}$. The formulas for the schemes are rather simple and easy to implement on a computer.
@article{ZVMMF_2014_54_7_a4,
     author = {S. Yu. Komarov and V. P. Shapeev},
     title = {Construction and study of high-order accurate schemes for solving the one-dimensional heat equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1136--1148},
     year = {2014},
     volume = {54},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a4/}
}
TY  - JOUR
AU  - S. Yu. Komarov
AU  - V. P. Shapeev
TI  - Construction and study of high-order accurate schemes for solving the one-dimensional heat equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1136
EP  - 1148
VL  - 54
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a4/
LA  - ru
ID  - ZVMMF_2014_54_7_a4
ER  - 
%0 Journal Article
%A S. Yu. Komarov
%A V. P. Shapeev
%T Construction and study of high-order accurate schemes for solving the one-dimensional heat equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1136-1148
%V 54
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a4/
%G ru
%F ZVMMF_2014_54_7_a4
S. Yu. Komarov; V. P. Shapeev. Construction and study of high-order accurate schemes for solving the one-dimensional heat equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1136-1148. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a4/

[1] Lipavskii M. V., Tolstykh A. M., “Ob odnoi multioperatornoi skheme desyatogo poryadka i ee primenenie v pryamom chislennom modelirovanii”, Zh. vychisl. matem. i matem. fiz., 53:4 (2013), 600–614 | DOI

[2] Botella O., Peyret R., “Benchmark spectral results on the lid-driven cavity flow”, Comput. Fluids, 2:4 (1998), 421–433 | DOI

[3] Garanzha V. A., Konshin V. N., “Chislennye algoritmy dlya techenii vyazkoi zhidkosti, osnovannye na konservativnykh kompaktnykh skhemakh vysokogo poryadka approksimatsii”, Zh. vychisl. matem. i matem. fiz., 39:8 (1999), 1378–1392

[4] Shapeev A. V., Lin P., “An asymptotic fitting finite element method with exponential mesh refinement for accurate computation of corner eddies in viscous flows”, SIAM J. Sci. Comput., 31:3 (2009), 1874–1900 | DOI

[5] Isaev V. I., Shapeev V. P., “Varianty metoda kollokatsii i naimenshikh kvadratov povyshennoi tochnosti dlya chislennogo resheniya uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 50:10 (2010), 1758–1770

[6] Isaev V. I., Shapeev V. P., “Metod kollokatsii i naimenshikh kvadratov povyshennoi tochnosti dlya resheniya uravnenii Nave–Stoksa”, Dokl. AN, 442:4 (2012), 442–445

[7] Albensoeder S., Kuhlmann N. S., “Accurate three-dimensional lid-driven cavity flow”, J. Comput. Phys., 206:2 (2005), 536–558 | DOI

[8] Shapeev V. P., Vorozhtsov E. V., Isaev V. I., Idimeshev S. V., “Metod kollokatsii i naimenshikh nevyazok dlya trekhmernykh uravnenii Nave–Stoksa”, Vychisl. matem. i programmirovanie, 14, Razd. 1 (2013), 306–322

[9] Saad Y., Schultz M. H., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput., 7 (1986), 856–869 | DOI

[10] Sleptsov A. G., “Ob uskorenii skhodimosti lineinykh iteratsii, II”, Modelirovanie v mekhan., 3(20):5 (1989), 118–125

[11] Dyakonov V. P., Mathematica 5/6/7. Polnoe rukovodstvo, DMK Press, M., 2009

[12] Edvards Ch. G., Penni D. E., Differentsialnye uravneniya i problema sobstvennykh znachenii: modelirovanie i vychislenie s pomoschyu Mathematica, Maple i MATLAB, “Vilyams”, M., 2007

[13] Valiullin A. N., Ganzha V. G., Ilin V. P., Shapeev V. P., Yanenko N. N., “Zadacha avtomaticheskogo postroeniya i issledovaniya na EVM raznostnykh skhem v analiticheskom vide”, Dokl. AN, 275:3 (1984), 528–532

[14] Shapeev V. P., Vorozhtsov E. V., “Symbolic-numeric implementation of the method of collocations and least squares for 3D Navier–Stokes equations”, Lect. Notes in Comput. Sci., 7442, Springer, Heidelberg, 2012, 321–333 | DOI

[15] Shapeev A. V., Shapeev V. P., “Difference schemes of increased order of accuracy for solving elliptical equations in domain with curvilinear boundary”, Comput. Math. Math. Phys., 40:2 (2000), 213–221

[16] Shapeev V. P., Shapeev A. V., “Reshenie ellipticheskikh zadach s osobennostyami po skhemam vysokogo poryadka approksimatsii”, Vychisl. tekhnologii, 11:2 (2006), 84–91

[17] Kalitkin H. H., Chislennye metody, Nauka, M., 1978

[18] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978

[19] Vazov V., Forsait Dzh., Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh, Izd-vo inostr. lit., M., 1963