@article{ZVMMF_2014_54_7_a4,
author = {S. Yu. Komarov and V. P. Shapeev},
title = {Construction and study of high-order accurate schemes for solving the one-dimensional heat equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1136--1148},
year = {2014},
volume = {54},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a4/}
}
TY - JOUR AU - S. Yu. Komarov AU - V. P. Shapeev TI - Construction and study of high-order accurate schemes for solving the one-dimensional heat equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1136 EP - 1148 VL - 54 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a4/ LA - ru ID - ZVMMF_2014_54_7_a4 ER -
%0 Journal Article %A S. Yu. Komarov %A V. P. Shapeev %T Construction and study of high-order accurate schemes for solving the one-dimensional heat equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1136-1148 %V 54 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a4/ %G ru %F ZVMMF_2014_54_7_a4
S. Yu. Komarov; V. P. Shapeev. Construction and study of high-order accurate schemes for solving the one-dimensional heat equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1136-1148. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a4/
[1] Lipavskii M. V., Tolstykh A. M., “Ob odnoi multioperatornoi skheme desyatogo poryadka i ee primenenie v pryamom chislennom modelirovanii”, Zh. vychisl. matem. i matem. fiz., 53:4 (2013), 600–614 | DOI
[2] Botella O., Peyret R., “Benchmark spectral results on the lid-driven cavity flow”, Comput. Fluids, 2:4 (1998), 421–433 | DOI
[3] Garanzha V. A., Konshin V. N., “Chislennye algoritmy dlya techenii vyazkoi zhidkosti, osnovannye na konservativnykh kompaktnykh skhemakh vysokogo poryadka approksimatsii”, Zh. vychisl. matem. i matem. fiz., 39:8 (1999), 1378–1392
[4] Shapeev A. V., Lin P., “An asymptotic fitting finite element method with exponential mesh refinement for accurate computation of corner eddies in viscous flows”, SIAM J. Sci. Comput., 31:3 (2009), 1874–1900 | DOI
[5] Isaev V. I., Shapeev V. P., “Varianty metoda kollokatsii i naimenshikh kvadratov povyshennoi tochnosti dlya chislennogo resheniya uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 50:10 (2010), 1758–1770
[6] Isaev V. I., Shapeev V. P., “Metod kollokatsii i naimenshikh kvadratov povyshennoi tochnosti dlya resheniya uravnenii Nave–Stoksa”, Dokl. AN, 442:4 (2012), 442–445
[7] Albensoeder S., Kuhlmann N. S., “Accurate three-dimensional lid-driven cavity flow”, J. Comput. Phys., 206:2 (2005), 536–558 | DOI
[8] Shapeev V. P., Vorozhtsov E. V., Isaev V. I., Idimeshev S. V., “Metod kollokatsii i naimenshikh nevyazok dlya trekhmernykh uravnenii Nave–Stoksa”, Vychisl. matem. i programmirovanie, 14, Razd. 1 (2013), 306–322
[9] Saad Y., Schultz M. H., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput., 7 (1986), 856–869 | DOI
[10] Sleptsov A. G., “Ob uskorenii skhodimosti lineinykh iteratsii, II”, Modelirovanie v mekhan., 3(20):5 (1989), 118–125
[11] Dyakonov V. P., Mathematica 5/6/7. Polnoe rukovodstvo, DMK Press, M., 2009
[12] Edvards Ch. G., Penni D. E., Differentsialnye uravneniya i problema sobstvennykh znachenii: modelirovanie i vychislenie s pomoschyu Mathematica, Maple i MATLAB, “Vilyams”, M., 2007
[13] Valiullin A. N., Ganzha V. G., Ilin V. P., Shapeev V. P., Yanenko N. N., “Zadacha avtomaticheskogo postroeniya i issledovaniya na EVM raznostnykh skhem v analiticheskom vide”, Dokl. AN, 275:3 (1984), 528–532
[14] Shapeev V. P., Vorozhtsov E. V., “Symbolic-numeric implementation of the method of collocations and least squares for 3D Navier–Stokes equations”, Lect. Notes in Comput. Sci., 7442, Springer, Heidelberg, 2012, 321–333 | DOI
[15] Shapeev A. V., Shapeev V. P., “Difference schemes of increased order of accuracy for solving elliptical equations in domain with curvilinear boundary”, Comput. Math. Math. Phys., 40:2 (2000), 213–221
[16] Shapeev V. P., Shapeev A. V., “Reshenie ellipticheskikh zadach s osobennostyami po skhemam vysokogo poryadka approksimatsii”, Vychisl. tekhnologii, 11:2 (2006), 84–91
[17] Kalitkin H. H., Chislennye metody, Nauka, M., 1978
[18] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978
[19] Vazov V., Forsait Dzh., Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh, Izd-vo inostr. lit., M., 1963