Numerical method of solution to loaded nonlocal boundary value problems for ordinary differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1096-1109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical method is suggested for solving systems of nonautonomous loaded linear ordinary differential equations with nonseparated multipoint and integral conditions. The method is based on the convolution of integral conditions into local ones. As a result, the original problem is reduced to an initial value (Cauchy) problem for systems of ordinary differential equations and linear algebraic equations. The approach proposed is used in combination with the linearization method to solve systems of loaded nonlinear ordinary differential equations with nonlocal conditions. An example of a loaded parabolic equation with nonlocal initial and boundary conditions is used to show that the approach can be applied to partial differential equations. Numerous numerical experiments on test problems were performed with the use of the numerical formulas and schemes proposed.
@article{ZVMMF_2014_54_7_a2,
     author = {V. M. Abdullaev and K. R. Aida-zade},
     title = {Numerical method of solution to loaded nonlocal boundary value problems for ordinary differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1096--1109},
     year = {2014},
     volume = {54},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a2/}
}
TY  - JOUR
AU  - V. M. Abdullaev
AU  - K. R. Aida-zade
TI  - Numerical method of solution to loaded nonlocal boundary value problems for ordinary differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1096
EP  - 1109
VL  - 54
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a2/
LA  - ru
ID  - ZVMMF_2014_54_7_a2
ER  - 
%0 Journal Article
%A V. M. Abdullaev
%A K. R. Aida-zade
%T Numerical method of solution to loaded nonlocal boundary value problems for ordinary differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1096-1109
%V 54
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a2/
%G ru
%F ZVMMF_2014_54_7_a2
V. M. Abdullaev; K. R. Aida-zade. Numerical method of solution to loaded nonlocal boundary value problems for ordinary differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1096-1109. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a2/

[1] Tamarkin Ya. D., O nekotorykh obschikh zadachakh teorii obyknovennykh differentsialnykh uravnenii i o razlozhenii proizvolnykh funktsii v ryady, Petrograd, 1917

[2] Kneser A., Die Integralgleichungen und ihre Anwendung in der matem. Physik, 1923

[3] De la Vallée-Poussin Ch. J., “Sur l'équation différentielle linéaire du second ordre. Détermination d"une integrale par deux valeurs assignees. Extension aux équations d'ordre n”, J. Math. Pures Appl., 8:9 (1929), 125–144

[4] Lichtenstein L., Vorlesungen über einege Klassen nichtlinear Integralgleichungen und Integraldifferentialgleihungen nebst Anwendungen, Springer, Berlin, 1932

[5] Gyunter N. M., “K obschei teorii integralnykh uravnenii”, Dokl. AN SSSR, 22 (1939), 215–219

[6] Iskenderov A. D., “O smeshannoi zadache dlya nagruzhennykh kvazilineinykh uravnenii giperbolicheskogo tipa”, Dokl. AN SSSR, 199:6 (1971), 1237–1239

[7] Nakhushev A. M., “O zadache Darbu dlya odnogo vyrozhdayuschegosya nagruzhennogo integrodifferentsialnogo uravneniya vtorogo poryadka”, Differents. ur-niya, 12:1 (1976), 103–108

[8] Dikinov Kh. Zh., Kerefov A. A., Nakhushev A. M., “Ob odnoi kraevoi zadache dlya nagruzhennogo uravneniya teploprovodnosti”, Differents. ur-niya, 12:1 (1976), 177–179

[9] Borodin A. V., “Ob odnoi otsenke dlya ellipticheskikh uravnenii i ee prilozhenii k nagruzhennym uravneniyam”, Differents. ur-niya, 13:1 (1977), 17–23

[10] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[11] Nakhushev A. M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012

[12] Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya nagruzhennogo uravneniya teploprovodnosti s kraevymi usloviyami III roda”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1223–1231

[13] Dzhenaliev M. T., K teorii lineinykh kraevykh zadach dlya nagruzhennykh differentsialnykh uravnenii, Kompyuternyi tsentr ITPM, Almaty, 1995

[14] Tokova A. A., “Kraevaya zadacha dlya odnogo nagruzhennogo differentsialnogo uravneniya”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 7:2 (2005), 56–61

[15] Kiguradze I. T., “Kraevye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Sovr. problemy matematiki. Nov. dostizheniya, 30, 1987, 3–103

[16] Yakovlev M. N., “Otsenki reshenii sistem nagruzhennykh integro-differentsialnykh uravnenii, podchinennykh mnogotochechnym i integralnym kraevym usloviyam”, Zap. nauchn. sem. LOMI, 124, 1983, 131–139

[17] Alikhanov A. A., Berezkov A. M., Shkhanukov-Lafishev M. Kh., “Kraevye zadachi dlya nekotorykh klassov nagruzhennykh differentsialnykh uravnenii i raznostnye metody ikh chislennoi realizatsii”, Zh. vychisl. matem. i matem. fiz., 48:9 (2008), 1619–1628

[18] Aida-zade K. R., “O reshenii sistem differentsialnykh uravnenii s nelokalnymi usloviyami”, Vychislitelnye tekhnologii, 1:9 (2005), 11–25

[19] Abdullaev V. M., Aida-zade K. R., “O chislennom reshenii nagruzhennykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1585–1595

[20] Aida-zade K. R., Abdullaev V. M., “Chislennoe reshenie sistem differentsialnykh uravnenii s nerazdelennymi tochechnymi i integralnymi usloviyami”, Izv. vyssh. tekhn. uchebn. zavedenii Azerbaidzhana. Ser. Informatika i avtomatika, 13:4 (2011), 64–70

[21] Abdullaev V. M., Aida-zade K. R., “O chislennom reshenii zadach optimalnogo upravleniya s nerazdelennymi mnogotochechnymi i integralnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 52:12 (2012), 2163–2177

[22] Abdullaev V. M., “Reshenie differentsialnykh uravnenii s nerazdelennymi i integralnymi usloviyami”, Sib. zh. industr. matem., 15:3(51) (2012), 3–15

[23] Godunov S. K., “O chislennom reshenii kraevykh zadach dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii”, Uspekhi matem. nauk, 16:3(99) (1961), 171–175

[24] Abramov A. A., “Variant metoda progonki”, Zh. vychisl. matem. i matemat. fiz., 1:2 (1961), 349–352

[25] Rothe E., “Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben”, Math. Ann., 102:1 (1930), 650–670 | DOI