@article{ZVMMF_2014_54_7_a10,
author = {E. M. Vikhtenko and G. Woo and R. V. Namm},
title = {Sensitivity functionals in contact problems of elasticity theory},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1218--1228},
year = {2014},
volume = {54},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a10/}
}
TY - JOUR AU - E. M. Vikhtenko AU - G. Woo AU - R. V. Namm TI - Sensitivity functionals in contact problems of elasticity theory JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1218 EP - 1228 VL - 54 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a10/ LA - ru ID - ZVMMF_2014_54_7_a10 ER -
%0 Journal Article %A E. M. Vikhtenko %A G. Woo %A R. V. Namm %T Sensitivity functionals in contact problems of elasticity theory %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1218-1228 %V 54 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a10/ %G ru %F ZVMMF_2014_54_7_a10
E. M. Vikhtenko; G. Woo; R. V. Namm. Sensitivity functionals in contact problems of elasticity theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1218-1228. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a10/
[1] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989
[2] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987
[3] By G., Namm R. V., Sachkov S. A., “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 26–36
[4] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986
[5] Kikuchi N., Oden J. T., Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988
[6] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980
[7] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974
[8] Vikhtenko E. M., Namm R. V., “Skhema dvoistvennosti dlya resheniya polukoertsitivnoi zadachi Sinorini s treniem”, Zh. vychisl. matem. i matem. fiz., 47:12 (2007), 2023–2036
[9] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010
[10] Mclean W., Strongly elliptic systems and boundary integral equations, University Press, Cambridge, United Kingdom, 2000
[11] Vikhtenko E. M., “O metode poiska sedlovoi tochki modifitsirovannogo funktsionala Lagranzha dlya zadachi teorii uprugosti s zadannym treniem”, Dalnevostochnyi matem. zh., 12:1 (2012), 3–11
[12] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979
[13] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1980
[14] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nevskii dialekt, S.-Pb., 2004