Sensitivity functionals in contact problems of elasticity theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1218-1228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The sensitivity functional constructed for the variational elasticity problem with given friction is proved to be lower semicontinuous. An analysis based on this property is conducted for a duality scheme with the modified Lagrangian functional.
@article{ZVMMF_2014_54_7_a10,
     author = {E. M. Vikhtenko and G. Woo and R. V. Namm},
     title = {Sensitivity functionals in contact problems of elasticity theory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1218--1228},
     year = {2014},
     volume = {54},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a10/}
}
TY  - JOUR
AU  - E. M. Vikhtenko
AU  - G. Woo
AU  - R. V. Namm
TI  - Sensitivity functionals in contact problems of elasticity theory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1218
EP  - 1228
VL  - 54
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a10/
LA  - ru
ID  - ZVMMF_2014_54_7_a10
ER  - 
%0 Journal Article
%A E. M. Vikhtenko
%A G. Woo
%A R. V. Namm
%T Sensitivity functionals in contact problems of elasticity theory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1218-1228
%V 54
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a10/
%G ru
%F ZVMMF_2014_54_7_a10
E. M. Vikhtenko; G. Woo; R. V. Namm. Sensitivity functionals in contact problems of elasticity theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1218-1228. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a10/

[1] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989

[2] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987

[3] By G., Namm R. V., Sachkov S. A., “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 26–36

[4] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986

[5] Kikuchi N., Oden J. T., Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988

[6] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980

[7] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[8] Vikhtenko E. M., Namm R. V., “Skhema dvoistvennosti dlya resheniya polukoertsitivnoi zadachi Sinorini s treniem”, Zh. vychisl. matem. i matem. fiz., 47:12 (2007), 2023–2036

[9] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[10] Mclean W., Strongly elliptic systems and boundary integral equations, University Press, Cambridge, United Kingdom, 2000

[11] Vikhtenko E. M., “O metode poiska sedlovoi tochki modifitsirovannogo funktsionala Lagranzha dlya zadachi teorii uprugosti s zadannym treniem”, Dalnevostochnyi matem. zh., 12:1 (2012), 3–11

[12] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979

[13] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1980

[14] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nevskii dialekt, S.-Pb., 2004