On an algorithm for calculating diffraction integrals
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1078-1095 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

n algorithm for calculating integrals of rapidly oscillating functions given on a smooth two-dimensional surface is proposed. The surface is approximated by a collection of flat triangles with the values of the integrand known at their vertices. These values are used as reference ones to extend the function to other points of a triangle. The integral of the extended function over the surface of a triangle is calculated exactly. The desired value of the full diffraction integral is determined as the sum of the integrals calculated over the surfaces of all triangles. The resulting formulas for integral calculation involve singularities (indeterminate forms). Much attention is given to representations of these formulas in such a way that the indeterminate forms are automatically evaluated. Numerical results are presented.
@article{ZVMMF_2014_54_7_a1,
     author = {A. F. Albu and V. I. Zubov},
     title = {On an algorithm for calculating diffraction integrals},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1078--1095},
     year = {2014},
     volume = {54},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a1/}
}
TY  - JOUR
AU  - A. F. Albu
AU  - V. I. Zubov
TI  - On an algorithm for calculating diffraction integrals
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1078
EP  - 1095
VL  - 54
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a1/
LA  - ru
ID  - ZVMMF_2014_54_7_a1
ER  - 
%0 Journal Article
%A A. F. Albu
%A V. I. Zubov
%T On an algorithm for calculating diffraction integrals
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1078-1095
%V 54
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a1/
%G ru
%F ZVMMF_2014_54_7_a1
A. F. Albu; V. I. Zubov. On an algorithm for calculating diffraction integrals. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1078-1095. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a1/

[1] Pakhomov I. I., Raschet preobrazovaniya lazernogo puchka v opticheskikh sistemakh, MVTU, M., 1984

[2] Pakhomov I. I., Tsibulya A. B., Raschet opticheskikh sistem lazernykh priborov, Radio i svyaz, M., 1986

[3] Bakhvalov N. S., Chislennye metody (analiz, algebra, obyknovennye differentsialnye uravneniya), Nauka, M., 1975

[4] Kalitkin H. H., Chislennye metody, Nauka, M., 1978

[5] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya bazovykh znanii, M., 2000

[6] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, Izd-vo Mosk. fiz.-tekh. in-ta, M., 1994

[7] Longman I. M., “A method for the numerical evaluation of finite integrals of oscillatory functions”, Math. Comput., 14:69 (1960), 53–59 | DOI

[8] Zhileikin Ya. M., Kukarkin A. V., Priblizhennoe vychislenie integralov ot bystroostsilliruyuschikh funktsii, Izd-vo Mosk. un-ta, M., 1987

[9] Friden B., Kompyutery v opticheskikh issledovaniyakh, Per. s angl. pod red. S. A. Akhmanova, Mir, M., 1983

[10] Rodionov S. A., Avtomatizatsiya proektirovaniya opticheskikh sistem, Mashinostroenie, L., 1982

[11] Hopkins H. H., “The numerical evaluation of the frequency of optical system”, Proc. the Physical Society, 444B (1957), 1002–1008 | DOI

[12] Lenskii A. V., “O vychislenii ChKKh po metodu Gopkinsa”, Optika i spektroskopiya, 23:2 (1967), 346

[13] Rodionov S. A., “Ispolzovanie proizvodnykh vesovoi funktsii v metode Gopkinsa dlya vychisleniya difraktsionnykh integralov”, Izv. vyssh. uchebn. zavedenii. Priborostroenie, XV:112 (1972), 99–103

[14] Shewchuk J. R., “Triangle: engineering a 2D quality mesh generator and Delaunay triangulator”, Applied Computational Geometry: Towards Geometric Engineering, Lecture Notes in Computer Science, 1148, Springer-Verlag, Berlin, 1996, 203–222 | DOI

[15] Shewchuk J. R., “Delaunay refinement algorithms for triangular mesh generation”, Computational Geometry: Theory and Applications, 22:1–3 (2002), 21–74 | DOI

[16] Beklemishev D. V., Kurs analiticheskoi geometrii i lineinoi algebry, Fizmatlit, M., 2009