@article{ZVMMF_2014_54_7_a0,
author = {E. A. Bailov and M. B. Sikhov and N. Temirgaliev},
title = {General algorithm for the numerical integration of functions of several variables},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1059--1077},
year = {2014},
volume = {54},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a0/}
}
TY - JOUR AU - E. A. Bailov AU - M. B. Sikhov AU - N. Temirgaliev TI - General algorithm for the numerical integration of functions of several variables JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1059 EP - 1077 VL - 54 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a0/ LA - ru ID - ZVMMF_2014_54_7_a0 ER -
%0 Journal Article %A E. A. Bailov %A M. B. Sikhov %A N. Temirgaliev %T General algorithm for the numerical integration of functions of several variables %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1059-1077 %V 54 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a0/ %G ru %F ZVMMF_2014_54_7_a0
E. A. Bailov; M. B. Sikhov; N. Temirgaliev. General algorithm for the numerical integration of functions of several variables. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 7, pp. 1059-1077. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_7_a0/
[1] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, izdanie vtoroe, pererabotannoe i dopolnennoe, MTsNMO, M., 2004
[2] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963
[3] Hlawka E., Firneis F., Zinterhof P., Zahlentheoretische methoden in der numerischen mathematik, Wien–München–Oldenbourg, 1981
[4] Hua Loo Keng, Wang Yuan, Application of number theory of numerical analysis, Springer, New York, 1981
[5] Keipers L., Niderreiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985
[6] Sharygin I. F., “Otsenki snizu pogreshnosti kvadraturnykh formul na klassakh funktsii”, Zh. vychisl. matem. i matem. fiz., 3:3 (1963), 370–376
[7] Roth K. F., “Ogranicheniya dlya regulyarnosti”, Matematika: granitsy i perspektivy, FAZIS, M., 2005, 375–394
[8] Vasilkovskii G. V., Voznyakovskii G., “Obzor slozhnosti v srednei situatsii dlya lineinykh mnogomernykh problem”, Izv. vuzov. Matem., 2009, no. 4, 3–19
[9] Temirgaliev N., Bailov E. A., Zhubanysheva A. Zh., “Ob obschem algoritme chislennogo integrirovaniya periodicheskikh funktsii mnogikh peremennykh”, Dokl. AN, 416:2 (2007), 169–173
[10] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primenenie tenzornykh proizvedenii funktsionalov v zadachakh chislennogo integrirovaniya”, Izv. RAN. Ser. matem., 73:2 (2009), 183–224 | DOI
[11] Voronin S. M., Temirgaliev N., “O kvadraturnykh formulakh, svyazannykh s divizorami polya gaussovykh chisel”, Matem. zametki, 46:2 (1989), 34–41
[12] Temirgaliev N., “Primenenie teorii divizorov k chislennomu integrirovaniyu periodicheskikh funktsii mnogikh peremennykh”, Matem. sb., 181:4 (1990), 490–505
[13] Korobov N. M., “O priblizhennom vychislenii kratnykh integralov”, Dokl. AN SSSR, 124:6 (1959), 1207–1210
[14] Bakhvalov N. S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. MGU. Ser. matem. mekhan., 1959, no. 4, 3–18
[15] Temlyakov V. N., “Kvadraturnye formuly i vosstanovlenie po znacheniyam v uzlakh teoretiko-chislovykh setok dlya klassov funktsii maloi gladkosti”, Uspekhi matem. nauk, 40:4 (1985), 203–204
[16] Temlyakov V. N., “O vosstanovlenii periodicheskikh funktsii neskolkikh peremennykh po znacheniyam v uzlakh teoretiko-chislovykh setok”, Analysis Math., 12 (1986), 287–305 | DOI
[17] Temlyakov V. N., “Cubature formulas, discrepancy, and nonlinear approximation”, J. Complexity, 19 (2003), 352–391 | DOI
[18] Frolov K. K., “Otsenki sverkhu pogreshnosti kvadraturnykh formul na klassakh funktsii”, Dokl. AN SSSR, 231:4 (1976), 818–821
[19] Wang Yuan, “Number theoretic method in numerical analysis”, Contemporary Math., 77, 1988, 63–82 | DOI
[20] Bykovskii V. A., “Algoritm vychisleniya lokalnykh minimumov reshetok”, Dokl. AN, 399:5 (2004), 587–589
[21] Voronin S. M., “O kvadraturnykh formulakh”, Izv. RAN. Ser. matem., 58:4 (1994), 189–194
[22] Voronin S. M., “O postroenii kvadraturnykh formul”, Izv. RAN. Ser. matem., 59:4 (1995), 3–8
[23] Voronin S. M., Skalyga V. I., “O poluchenii algoritmov chislennogo integrirovaniya”, Izv. RAN. Ser. matem., 60:5 (1996), 13–18 | DOI
[24] Voronin S. M., Izbrannye trudy: Matematika, Izd-vo MGTU im. N. E. Baumana, M., 2006
[25] Temirgaliev N., “Ob effektivnosti algoritmov chislennogo integrirovaniya, svyazannykh s teoriei divizorov v krugovykh polyakh”, Matem. zametki, 1997, no. 2, 297–301 | DOI
[26] Temirgaliev N., “Teoretiko-chislovye metody i teoretiko-veroyatnostnyi podkhod k zadacham Analiza. Teoriya vlozhenii i priblizhenii, absolyutnaya skhodimost i preobrazovaniya ryadov Fure”, Vestn. Evraziiskogo un-ta, 1997, no. 3, 90–144
[27] Zhubanysheva A. Zh., Temirgaliev N., Temirgalieva Zh. N., “Primenenie teorii divizorov k postroeniyu tablits optimalnykh koeffitsientov kvadraturnykh formul”, Zh. vychisl. matem. i matem. fiz., 49:1 (2009), 14–25
[28] Sikhov M., Temirgaliev N., “Ob algoritme postroeniya ravnomerno raspredelennykh setok Korobova”, Matem. zametki, 87:6 (2010), 948–950 | DOI
[29] Temirgaliev N., “Kompyuternyi (vychislitelnyi) poperechnik. Algebraicheskaya teoriya chisel i garmonicheskii analiz v zadachakh vosstanovleniya (metod Kvazi–Monte Karlo). Teoriya vlozhenii i priblizhenii. Ryady Fure”, Vest. ENU, 2010, Spets. vypusk, posvyaschennyi nauchn. dostizheniyam matematikov ENU, 1–194
[30] Temirgaliev N., Nepreryvnaya i diskretnaya matematika v organicheskom edinstve v kontekste napravlenii issledovanii, Elektronnoe izdanie, In-t teor. matem. i nauchn. vychisl. Evraziiskii nats. un-t, Astana, 2012, 259 pp.
[31] Smolyak S. A., “Kvadraturnye i interpolyatsionnye formuly na tenzornykh proizvedeniyakh nekotorykh klassov funktsii”, Dokl. AN SSSR, 148:5 (1963), 1042–1045
[32] Smolyak S. A., Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Dis. ... kand. fiz.-matem. nauk,, Otkrytyi fond bibl. mekhan.-matem. f-ta MGU, M., 1965
[33] Paskov S., “Average case complexity for multivariate integration for smooth functions”, J. Complexity, 1993, no. 9, 291–312 | DOI
[34] Wasilkowski G., Wozniakowski H., “Explicit cost bounds of algorithms for multivariate tensor product problems”, J. Complexity, 1995, no. 11, 1–56 | DOI
[35] Temirgaliev N., “Klassy $U_S(\beta,\theta,\alpha;\psi)$ i kvadraturnye formuly”, Dokl. AN, 393:5 (2003), 605–608
[36] Temirgaliev N., “Tenzornye proizvedeniya funktsionalov i ikh primeneniya”, Dokl. AN, 430:4 (2010), 460–465
[37] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primeneniya kvadraturnykh formul Smolyaka k chislennomu integrirovaniyu koeffitsientov Fure i v zadachakh vosstanovleniya”, Izv. vuzov. Matem., 2010, no. 3, 52–71
[38] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985
[39] Gekke E., Lektsii po teorii algebraicheskikh chisel, Gostekhizdat, M.–L., 1940
[40] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987
[41] Bukhshtab A. A., Teoriya chisel, Uchpedgiz, M., 1960
[42] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965
[43] Gauss C. F., Untersuchungen uber die eigenschaften der positiven ternaren quadratishen former von Ludvig August Seebeer, Gottingische gelehrte Anzeigen, 1831/Juli 9
[44] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967
[45] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR, 178, 1986, 3–113
[46] Dobrovolskii N. M., Klepikova N. L., Tablitsa optimalnykh koeffitsientov dlya priblizhennogo vychisleniya kratnykh integralov, Preprint No 63, Institut obschei fiziki AN SSSR. Prikl. matem. Otdel prikl. probl., M., 1990
[47] Solovev Yu. P., Sadovnichii V. A., Shavgulidze E. T., Belokurov V. V., Ellipticheskie krivye i sovremennye algoritmy teorii chisel, Izhevsk: In-t kompyuternykh issledovanii, M., 2003
[48] Lokutsievskii O. V., Gavrilov M. B., Nachala chislennogo analiza, TOO Yanus, M., 1995