Domain effect on the behavior of solutions of a distributed kinetic system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 988-999
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A distributed kinetic system that is in homogeneous equilibrium in a flat circular reactor is considered. Its behavior under deformations of the circular domain is studied. It is shown that a domain deformation may lead to the formation of stable spatially inhomogeneous oscillatory solutions in the neighborhood of the homogeneous equilibrium. The possibility of developing chaotic oscillations is discussed. This mechanism of creating spatially inhomogeneous nonlinear oscillations in the distributed kinetic system is called the domain effect.
@article{ZVMMF_2014_54_6_a9,
     author = {E. P. Kubyshkin},
     title = {Domain effect on the behavior of solutions of a distributed kinetic system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {988--999},
     year = {2014},
     volume = {54},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a9/}
}
TY  - JOUR
AU  - E. P. Kubyshkin
TI  - Domain effect on the behavior of solutions of a distributed kinetic system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 988
EP  - 999
VL  - 54
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a9/
LA  - ru
ID  - ZVMMF_2014_54_6_a9
ER  - 
%0 Journal Article
%A E. P. Kubyshkin
%T Domain effect on the behavior of solutions of a distributed kinetic system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 988-999
%V 54
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a9/
%G ru
%F ZVMMF_2014_54_6_a9
E. P. Kubyshkin. Domain effect on the behavior of solutions of a distributed kinetic system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 988-999. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a9/

[1] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskoe modelirovanie v biofizike, Nauka, M., 1975 | MR

[2] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Per. s angl., Mir, M., 1985 | MR

[3] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[4] Kulikov A. N., O gladkikh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve. Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslavskii un-t, Yaroslavl, 1976

[5] Marsden D., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[6] Kuznetsov A. Yu., Bifurkatsiya Andronova–Khopfa v chetyrekhmernoi sisteme s krugovoi simmetriei, Preprint, Nauchnyi tsentr biologicheskikh issledovanii, Puschino, 1984

[7] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[8] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennye metody resheniya operatornykh uravnenii, Nauka, M., 1969

[9] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973 | MR

[10] Kheil Dzh., Kolebaniya v nelineinykh sistemakh, Mir, M., 1966

[11] Glyzin D. S., Paket programm dlya analiza dinamicheskikh sistem “Tracer”. Versiya 3.70, Svidetelstvo gos. registratsii programmy dlya EVM 2008611464

[12] Wolf A., Swift J. B., Swinney H. L., Vastano J. A., “Determining Lyapunov exponents from a time series”, Physica D, 16 (1985), 285–317 | DOI | MR | Zbl