Spatially distributed control of the dynamics of the logistic delay equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 953-968
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The influence exerted by a small spatially inhomogeneous control on the dynamics of the logistic delay equation is studied. This paper consists of two parts. The first deals with the case where the logistic delay equation has a stable relaxation cycle. It is shown that a small control function can give rise to complex relaxation objects, namely, to a large number of different attractors. In the second part, the local dynamics of the stability problem is analyzed in a neighborhood of equilibrium in a close-to-critical case of “infinite” dimension. Special quasi-normal forms are constructed whose nonlocal dynamics determine the local behavior of solutions to the original equation. Some results of a numerical analysis are presented.
@article{ZVMMF_2014_54_6_a6,
     author = {D. S. Glyzin and S. A. Kashchenko},
     title = {Spatially distributed control of the dynamics of the logistic delay equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {953--968},
     year = {2014},
     volume = {54},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a6/}
}
TY  - JOUR
AU  - D. S. Glyzin
AU  - S. A. Kashchenko
TI  - Spatially distributed control of the dynamics of the logistic delay equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 953
EP  - 968
VL  - 54
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a6/
LA  - ru
ID  - ZVMMF_2014_54_6_a6
ER  - 
%0 Journal Article
%A D. S. Glyzin
%A S. A. Kashchenko
%T Spatially distributed control of the dynamics of the logistic delay equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 953-968
%V 54
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a6/
%G ru
%F ZVMMF_2014_54_6_a6
D. S. Glyzin; S. A. Kashchenko. Spatially distributed control of the dynamics of the logistic delay equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 953-968. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a6/

[1] Kakutani S., Markus L., “On the non-linear difference-differential equation $y'(t)=(a-by(t-\tau))y(t)$ contributions to the theory of non-linear oscillations”, Ann. Math. Stud., IV, Princeton University Press, Princeton, 1958, 1–18 | MR

[2] Kaschenko S. A., “Asimptotika reshenii obobschennogo uravneniya Khatchinsona”, Modelirovanie i analiz informatsionnykh sistem, 19:3 (2012), 32–62

[3] Jones G. S., “The existence of periodic solutions of $f'(x)=-\alpha f(x-1)[1+f(x)]$”, J. Math. Anal. and Appl., 5 (1962), 435–450 | DOI | MR | Zbl

[4] Hassard B. D., Kazarinoff N. D., Wan Y. H., Theory and applications of Hopf bifurcation, London Mathematical Society Lecture Note. Ser., 41, Cambridge University Press, Cambridge, 1981 | MR | Zbl

[5] Kuramoto Y., Battogtokh D., “Coexisting of coherence and incoherence in nonlocally coupled phase oscillators”, Nonlinear Phenomena in Complex Systems, 5:4 (2002), 380–385

[6] Kaschenko S. A., “Ob ustanovivshikhsya rezhimakh uravneniya Khatchinsona s diffuziei”, Dokl. AN SSSR, 292:2 (1987), 327–330 | MR | Zbl

[7] Kaschenko S. A., “Prostranstvenno-neodnorodnye struktury v prosteishikh modelyakh s zapazdyvaniem i diffuziei”, Matem. modelirovanie, 2:10 (1990), 49–69 | Zbl

[8] Kaschenko S. A., “Asimptoticheskii analiz relaksatsionnykh kolebanii v prosteishikh modelyakh dinamiki populyatsii”, Prikladnye problemy teorii kolebanii, Gorkii, 1990, 114–119 | MR

[9] Vasileva A. V., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973

[10] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1053

[11] Kaschenko S. A., “Normalization in the systems with small diffusion”, Internat. J. Bifurcations and chaos, 6:7 (1996), 1093–1109 | DOI | MR | Zbl

[12] Kaschenko I. S., “Dinamika uravneniya s bolshim koeffitsientom zapazdyvayuschego upravleniya”, Dokl. AN, 437:6 (2011), 743–747 | Zbl

[13] Kaschenko I. S., Kaschenko S. A., “Dinamika uravneniya Kuramoto s prostranstvenno-raspredelennym upravleniem”, Modelirovanie i analiz informatsionnykh sistem, 19 (2012), 24–36 | MR

[14] Kaschenko S. A., “Asimptotika periodicheskikh reshenii avtonomnykh parabolicheskikh uravnenii s maloi diffuziei”, Sibirsk. matem. zh., KhKhVII:6 (1986), 116–128

[15] Kolesov Yu. S., Kolesov V. S., Fedik I. I., Avtokolebaniya v sistemakh s raspredelennymi parametrami, Naukova dumka, Kiev, 1979

[16] Glyzin D. S., Kaschenko S. A., Polstyanov A. S., “Prostranstvenno-neodnorodnye periodicheskie resheniya v raspredelennom uravnenii Khatchinsona”, Modelirovanie i analiz informatsionnykh sistem, 16:4 (2009), 77–85

[17] Bestehorn M., Grigorieva E. V., Kaschenko S. A., “Spatiotemporal structures in a model with delay and diffusion”, Phys. Rev., E70 (2004), 026202 | MR