Three-level schemes of the alternating triangular method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 942-952
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the schemes of the alternating triangular method are set out in the class of splitting methods used for the approximate solution of Cauchy problems for evolutionary problems. These schemes are based on splitting the problem operator into two operators that are conjugate transposes of each other. Economical schemes for the numerical solution of boundary value problems for parabolic equations are designed on the basis of an explicit-implicit splitting of the problem operator. The alternating triangular method is also of interest for the construction of numerical algorithms that solve boundary value problems for systems of partial differential equations and vector systems. The conventional schemes of the alternating triangular method used for first-order evolutionary equations are two-level ones. The approximation properties of such splitting methods can be improved by transiting to three-level schemes. Their construction is based on a general principle for improving the properties of difference schemes, namely, on the regularization principle of A. A. Samarskii. The analysis conducted in this paper is based on the general stability (or correctness) theory of operator-difference schemes.
@article{ZVMMF_2014_54_6_a5,
     author = {P. N. Vabishchevich},
     title = {Three-level schemes of the alternating triangular method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {942--952},
     year = {2014},
     volume = {54},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a5/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
TI  - Three-level schemes of the alternating triangular method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 942
EP  - 952
VL  - 54
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a5/
LA  - ru
ID  - ZVMMF_2014_54_6_a5
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%T Three-level schemes of the alternating triangular method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 942-952
%V 54
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a5/
%G ru
%F ZVMMF_2014_54_6_a5
P. N. Vabishchevich. Three-level schemes of the alternating triangular method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 942-952. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a5/

[1] Peaceman D. W., Rachford H. H., “The numerical solution of parabolic and elliptic differential equations”, J. SIAM, 3:1 (1955), 28–41 | MR | Zbl

[2] Douglas J. (Jr.), Rachford H. H., “On the numerical solution of heat conduction problems in two and three apace variables”, Trans. Amer. Math. Soc., 82:2 (1956), 421–439 | DOI | MR | Zbl

[3] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[5] Vabishchevich P. N., Additive operator-difference schemes. Splitting schemes, de Gruyter, Berlin–Boston, 2013 | MR

[6] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[7] Lisbona F. L., Vabishchevich P. N., “Operator-splitting schemes for solving elasticity problems”, Comput. Meth. in Appl. Math., 1:2 (2001), 188–198 | DOI | MR | Zbl

[8] Vabischevich P. N., Samarskii A. A., “Reshenie zadach dinamiki neszhimaemoi zhidkosti s peremennoi vyazkostyu”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1813–1822 | MR

[9] Samarskii A. A., Vabishchevich P. N., “Additive schemes for systems of time-dependent equations of mathematical physics”, Numer. Meth. and Applications, Springer, Berlin, 2003, 48–60 | DOI | MR | Zbl

[10] Vabischevich P. N., “Raznostnye skhemy dlya resheniya nestatsionarnykh vektornykh zadach”, Differents. ur-niya, 40:7 (2004), 936–943 | MR

[11] Saulev V. K., Integrirovanie uravnenii parabolicheskogo tipa metodom setok, Fizmatgiz, M., 1960 | MR

[12] Vabishchevich P. N., Explicit schemes for parabolic and hyperbolic equations, 2013, arXiv: 1310.4046

[13] Samarskii A. A., “O regulyarizatsii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 7:1 (1967), 62–93 | MR

[14] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl

[15] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference schemes with operator factors, Kluwer, Dordrecht–Boston–London, 2002 | Zbl

[16] Samarskii A. A., “Ob odnom ekonomichnom algoritme chislennogo resheniya sistem differentsialnykh i algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 4:3 (1964), 580–585 | MR